Press "Enter" to skip to content

Posts published in February 2019

花花酱 LeetCode 988. Smallest String Starting From Leaf

Given the root of a binary tree, each node has a value from 0 to 25representing the letters 'a' to 'z': a value of 0 represents 'a', a value of 1 represents 'b', and so on.

Find the lexicographically smallest string that starts at a leaf of this tree and ends at the root.

(As a reminder, any shorter prefix of a string is lexicographically smaller: for example, "ab" is lexicographically smaller than "aba".  A leaf of a node is a node that has no children.)

Example 1:

Input: [0,1,2,3,4,3,4]
Output: "dba"

Example 2:

Input: [25,1,3,1,3,0,2]
Output: "adz"

Example 3:

Input: [2,2,1,null,1,0,null,0]
Output: "abc"

Note:

  1. The number of nodes in the given tree will be between 1 and 1000.
  2. Each node in the tree will have a value between 0 and 25.

Solution: Recursion

Time complexity: O(n^2)
Space complexity: O(n^2)

C++

Python3

花花酱 LeetCode 987. Vertical Order Traversal of a Binary Tree

Given a binary tree, return the vertical order traversal of its nodes values.

For each node at position (X, Y), its left and right children respectively will be at positions (X-1, Y-1) and (X+1, Y-1).

Running a vertical line from X = -infinity to X = +infinity, whenever the vertical line touches some nodes, we report the values of the nodes in order from top to bottom (decreasing Y coordinates).

If two nodes have the same position, then the value of the node that is reported first is the value that is smaller.

Return an list of non-empty reports in order of X coordinate.  Every report will have a list of values of nodes.

Example 1:

Input: [3,9,20,null,null,15,7]
Output: [[9],[3,15],[20],[7]]
Explanation: 
Without loss of generality, we can assume the root node is at position (0, 0):
Then, the node with value 9 occurs at position (-1, -1);
The nodes with values 3 and 15 occur at positions (0, 0) and (0, -2);
The node with value 20 occurs at position (1, -1);
The node with value 7 occurs at position (2, -2).

Example 2:

Input: [1,2,3,4,5,6,7]
Output: [[4],[2],[1,5,6],[3],[7]]
Explanation: 
The node with value 5 and the node with value 6 have the same position according to the given scheme.
However, in the report "[1,5,6]", the node value of 5 comes first since 5 is smaller than 6.

Note:

  1. The tree will have between 1 and 1000 nodes.
  2. Each node’s value will be between 0 and 1000.

Solution: Ordered Map+ Ordered Set

Time complexity: O(nlogn)
Space complexity: O(n)

C++

Python3

花花酱 LeetCode 986. Interval List Intersections

Given two lists of closed intervals, each list of intervals is pairwise disjoint and in sorted order.

Return the intersection of these two interval lists.

(Formally, a closed interval [a, b] (with a <= b) denotes the set of real numbers x with a <= x <= b.  The intersection of two closed intervals is a set of real numbers that is either empty, or can be represented as a closed interval.  For example, the intersection of [1, 3] and [2, 4] is [2, 3].)

Example 1:

Input: A = [[0,2],[5,10],[13,23],[24,25]], B = [[1,5],[8,12],[15,24],[25,26]]
Output: [[1,2],[5,5],[8,10],[15,23],[24,24],[25,25]]
Reminder: The inputs and the desired output are lists of Interval objects, and not arrays or lists.

Note:

  1. 0 <= A.length < 1000
  2. 0 <= B.length < 1000
  3. 0 <= A[i].start, A[i].end, B[i].start, B[i].end < 10^9

Solution: Two pointers

Time complexity: O(m + n)
Space complexity: O(1)

C++

Python3

花花酱 LeetCode 985. Sum of Even Numbers After Queries

Problem

We have an array A of integers, and an array queries of queries.

For the i-th query val = queries[i][0], index = queries[i][1], we add val to A[index].  Then, the answer to the i-th query is the sum of the even values of A.

(Here, the given index = queries[i][1] is a 0-based index, and each query permanently modifies the array A.)

Return the answer to all queries.  Your answer array should have answer[i] as the answer to the i-th query.

Example 1:

Input: A = [1,2,3,4], queries = [[1,0],[-3,1],[-4,0],[2,3]]
Output: [8,6,2,4]
Explanation: 
At the beginning, the array is [1,2,3,4].
After adding 1 to A[0], the array is [2,2,3,4], and the sum of even values is 2 + 2 + 4 = 8.
After adding -3 to A[1], the array is [2,-1,3,4], and the sum of even values is 2 + 4 = 6.
After adding -4 to A[0], the array is [-2,-1,3,4], and the sum of even values is -2 + 4 = 2.
After adding 2 to A[3], the array is [-2,-1,3,6], and the sum of even values is -2 + 6 = 4.

Note:

  1. 1 <= A.length <= 10000
  2. -10000 <= A[i] <= 10000
  3. 1 <= queries.length <= 10000
  4. -10000 <= queries[i][0] <= 10000
  5. 0 <= queries[i][1] < A.length

Solution: Simulation

Time complexity: O(n + |Q|)
Space complexity: O(n)

C++

Python3