# Posts tagged as “binary search”

In universe Earth C-137, Rick discovered a special form of magnetic force between two balls if they are put in his new invented basket. Rick has n empty baskets, the ith basket is at position[i], Morty has m balls and needs to distribute the balls into the baskets such that the minimum magnetic force between any two balls is maximum.

Rick stated that magnetic force between two different balls at positions x and y is |x - y|.

Given the integer array position and the integer m. Return the required force.

Example 1:

Input: position = [1,2,3,4,7], m = 3
Output: 3
Explanation: Distributing the 3 balls into baskets 1, 4 and 7 will make the magnetic force between ball pairs [3, 3, 6]. The minimum magnetic force is 3. We cannot achieve a larger minimum magnetic force than 3.


Example 2:

Input: position = [5,4,3,2,1,1000000000], m = 2
Output: 999999999
Explanation: We can use baskets 1 and 1000000000.


Constraints:

• n == position.length
• 2 <= n <= 10^5
• 1 <= position[i] <= 10^9
• All integers in position are distinct.
• 2 <= m <= position.length

## Solution: Binary Search

Find the max distance that we can put m balls.

Time complexity: O(n*log(distance))
Space complexity: O(1)

## Python3

Given an array arr of positive integers sorted in a strictly increasing order, and an integer k.

Find the kth positive integer that is missing from this array.

Example 1:

Input: arr = [2,3,4,7,11], k = 5
Output: 9
Explanation: The missing positive integers are [1,5,6,8,9,10,12,13,...]. The 5th missing positive integer is 9.


Example 2:

Input: arr = [1,2,3,4], k = 2
Output: 6
Explanation: The missing positive integers are [5,6,7,...]. The 2nd missing positive integer is 6.


Constraints:

• 1 <= arr.length <= 1000
• 1 <= arr[i] <= 1000
• 1 <= k <= 1000
• arr[i] < arr[j] for 1 <= i < j <= arr.length

## Solution 1: HashTable

Store all the elements into a hashtable, and check from 1 to max(arr).

Time complexity: O(max(arr)) ~ O(1000)
Space complexity: O(n)

## Solution 2: Binary Search

We can find the smallest index l using binary search, s.t.
arr[l] – l + 1 >= k
which means we missed at least k numbers at index l.
And the answer will be l + k.

Time complexity: O(logn)
Space complexity: O(1)

## Python3

Winston was given the above mysterious function func. He has an integer array arr and an integer target and he wants to find the values l and r that make the value |func(arr, l, r) - target| minimum possible.

Return the minimum possible value of |func(arr, l, r) - target|.

Notice that func should be called with the values l and r where 0 <= l, r < arr.length.

Example 1:

Input: arr = [9,12,3,7,15], target = 5
Output: 2
Explanation: Calling func with all the pairs of [l,r] = [[0,0],[1,1],[2,2],[3,3],[4,4],[0,1],[1,2],[2,3],[3,4],[0,2],[1,3],[2,4],[0,3],[1,4],[0,4]], Winston got the following results [9,12,3,7,15,8,0,3,7,0,0,3,0,0,0]. The value closest to 5 is 7 and 3, thus the minimum difference is 2.


Example 2:

Input: arr = [1000000,1000000,1000000], target = 1
Output: 999999
Explanation: Winston called the func with all possible values of [l,r] and he always got 1000000, thus the min difference is 999999.


Example 3:

Input: arr = [1,2,4,8,16], target = 0
Output: 0


Constraints:

• 1 <= arr.length <= 10^5
• 1 <= arr[i] <= 10^6
• 0 <= target <= 10^7

## Solution: Brute Force w/ Optimization

Try all possible [l, r] range with pruning.
1. for a given l, we extend r, since s & x <= s, if s becomes less than target, we can stop the inner loop.
2. Case 1, s = arr[l] & … & arr[n-1], s > target,
Let s’ = arr[l+1] & … & arr[n-1], s’ >= s,
if s > target, then s’ > target, we can stop outer loop as well.
Case 2, inner loop stops at r, s = arr[l] & … & arr[r], s <= target, we continue with l+1.

Time complexity: O(n)? on average, O(n^2) in worst case.
Space complexity: O(1)

## C++

Given the array nums consisting of n positive integers. You computed the sum of all non-empty continous subarrays from the array and then sort them in non-decreasing order, creating a new array of n * (n + 1) / 2 numbers.

Return the sum of the numbers from index left to index right (indexed from 1), inclusive, in the new array. Since the answer can be a huge number return it modulo 10^9 + 7.

Example 1:

Input: nums = [1,2,3,4], n = 4, left = 1, right = 5
Output: 13
Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13.


Example 2:

Input: nums = [1,2,3,4], n = 4, left = 3, right = 4
Output: 6
Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.


Example 3:

Input: nums = [1,2,3,4], n = 4, left = 1, right = 10
Output: 50


Constraints:

• 1 <= nums.length <= 10^3
• nums.length == n
• 1 <= nums[i] <= 100
• 1 <= left <= right <= n * (n + 1) / 2

## Solution 1: Brute Force

Find sums of all the subarrays and sort the values.

Time complexity: O(n^2logn)
Space complexity: O(n^2)

## Solution 2: Priority Queue/ Min Heap

For each subarray, start with one element e.g nums[i], put them into a priority queue (min heap). Each time, we have the smallest subarray sum, and extend that subarray and put the new sum back into priority queue. Thought it has the same time complexity as the brute force one in worst case, but space complexity can be reduce to O(n).

Time complexity: O(n^2logn)
Space complexity: O(n)

## Solution 3: Binary Search + Sliding Window

Use binary search to find S s.t. that there are at least k subarrys have sum <= S.

Given S, we can use sliding window to count how many subarrays have sum <= S and their total sum.

ans = sums_of_first(right) – sums_of_first(left – 1).

Time complexity: O(n * log(sum(nums))
Space complexity: O(n)

## C++

Your country has an infinite number of lakes. Initially, all the lakes are empty, but when it rains over the nth lake, the nth lake becomes full of water. If it rains over a lake which is full of water, there will be a flood. Your goal is to avoid the flood in any lake.

Given an integer array rains where:

• rains[i] > 0 means there will be rains over the rains[i] lake.
• rains[i] == 0 means there are no rains this day and you can choose one lake this day and dry it.

Return an array ans where:

• ans.length == rains.length
• ans[i] == -1 if rains[i] > 0.
• ans[i] is the lake you choose to dry in the ith day if rains[i] == 0.

If there are multiple valid answers return any of them. If it is impossible to avoid flood return an empty array.

Notice that if you chose to dry a full lake, it becomes empty, but if you chose to dry an empty lake, nothing changes. (see example 4)

Example 1:

Input: rains = [1,2,3,4]
Output: [-1,-1,-1,-1]
Explanation: After the first day full lakes are [1]
After the second day full lakes are [1,2]
After the third day full lakes are [1,2,3]
After the fourth day full lakes are [1,2,3,4]
There's no day to dry any lake and there is no flood in any lake.


Example 2:

Input: rains = [1,2,0,0,2,1]
Output: [-1,-1,2,1,-1,-1]
Explanation: After the first day full lakes are [1]
After the second day full lakes are [1,2]
After the third day, we dry lake 2. Full lakes are [1]
After the fourth day, we dry lake 1. There is no full lakes.
After the fifth day, full lakes are [2].
After the sixth day, full lakes are [1,2].
It is easy that this scenario is flood-free. [-1,-1,1,2,-1,-1] is another acceptable scenario.


Example 3:

Input: rains = [1,2,0,1,2]
Output: []
Explanation: After the second day, full lakes are  [1,2]. We have to dry one lake in the third day.
After that, it will rain over lakes [1,2]. It's easy to prove that no matter which lake you choose to dry in the 3rd day, the other one will flood.


Example 4:

Input: rains = [69,0,0,0,69]
Output: [-1,69,1,1,-1]
Explanation: Any solution on one of the forms [-1,69,x,y,-1], [-1,x,69,y,-1] or [-1,x,y,69,-1] is acceptable where 1 <= x,y <= 10^9


Example 5:

Input: rains = [10,20,20]
Output: []
Explanation: It will rain over lake 20 two consecutive days. There is no chance to dry any lake.


Constraints:

• 1 <= rains.length <= 10^5
• 0 <= rains[i] <= 10^9

## Solution: Binary Search

Store the days we can dry a lake in a treeset.
Store the last day when a lake becomes full in a hashtable.
Whenever we encounter a full lake, try to find the first available day that we can dry it. If no such day, return no answer.

Time complexity: O(nlogn)
Space complexity: O(n)

## C++

Mission News Theme by Compete Themes.