Press "Enter" to skip to content

Posts tagged as “tree”

花花酱 LeetCode 2477. Minimum Fuel Cost to Report to the Capital

There is a tree (i.e., a connected, undirected graph with no cycles) structure country network consisting of n cities numbered from 0 to n - 1 and exactly n - 1 roads. The capital city is city 0. You are given a 2D integer array roads where roads[i] = [ai, bi] denotes that there exists a bidirectional road connecting cities ai and bi.

There is a meeting for the representatives of each city. The meeting is in the capital city.

There is a car in each city. You are given an integer seats that indicates the number of seats in each car.

A representative can use the car in their city to travel or change the car and ride with another representative. The cost of traveling between two cities is one liter of fuel.

Return the minimum number of liters of fuel to reach the capital city.

Example 1:

Input: roads = [[0,1],[0,2],[0,3]], seats = 5
Output: 3
Explanation: 
- Representative1 goes directly to the capital with 1 liter of fuel.
- Representative2 goes directly to the capital with 1 liter of fuel.
- Representative3 goes directly to the capital with 1 liter of fuel.
It costs 3 liters of fuel at minimum. 
It can be proven that 3 is the minimum number of liters of fuel needed.

Example 2:

Input: roads = [[3,1],[3,2],[1,0],[0,4],[0,5],[4,6]], seats = 2
Output: 7
Explanation: 
- Representative2 goes directly to city 3 with 1 liter of fuel.
- Representative2 and representative3 go together to city 1 with 1 liter of fuel.
- Representative2 and representative3 go together to the capital with 1 liter of fuel.
- Representative1 goes directly to the capital with 1 liter of fuel.
- Representative5 goes directly to the capital with 1 liter of fuel.
- Representative6 goes directly to city 4 with 1 liter of fuel.
- Representative4 and representative6 go together to the capital with 1 liter of fuel.
It costs 7 liters of fuel at minimum. 
It can be proven that 7 is the minimum number of liters of fuel needed.

Example 3:

Input: roads = [], seats = 1
Output: 0
Explanation: No representatives need to travel to the capital city.

Constraints:

  • 1 <= n <= 105
  • roads.length == n - 1
  • roads[i].length == 2
  • 0 <= ai, bi < n
  • ai != bi
  • roads represents a valid tree.
  • 1 <= seats <= 105

Solution: Greedy + DFS

To reach the minimum cost, we must share cars if possible, say X reps from children nodes to an intermediate node u on the way towards capital 0. Then they all changes cars at node u, and we need (X + 1) // seats cars/fuel from u to 0.

We use DFS to count # of reps at each node u while accumulating the total cost.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 2476. Closest Nodes Queries in a Binary Search Tree

You are given the root of a binary search tree and an array queries of size n consisting of positive integers.

Find a 2D array answer of size n where answer[i] = [mini, maxi]:

  • mini is the largest value in the tree that is smaller than or equal to queries[i]. If a such value does not exist, add -1 instead.
  • maxi is the smallest value in the tree that is greater than or equal to queries[i]. If a such value does not exist, add -1 instead.

Return the array answer.

Example 1:

Input: root = [6,2,13,1,4,9,15,null,null,null,null,null,null,14], queries = [2,5,16]
Output: [[2,2],[4,6],[15,-1]]
Explanation: We answer the queries in the following way:
- The largest number that is smaller or equal than 2 in the tree is 2, and the smallest number that is greater or equal than 2 is still 2. So the answer for the first query is [2,2].
- The largest number that is smaller or equal than 5 in the tree is 4, and the smallest number that is greater or equal than 5 is 6. So the answer for the second query is [4,6].
- The largest number that is smaller or equal than 16 in the tree is 15, and the smallest number that is greater or equal than 16 does not exist. So the answer for the third query is [15,-1].

Example 2:

Input: root = [4,null,9], queries = [3]
Output: [[-1,4]]
Explanation: The largest number that is smaller or equal to 3 in the tree does not exist, and the smallest number that is greater or equal to 3 is 4. So the answer for the query is [-1,4].

Constraints:

  • The number of nodes in the tree is in the range [2, 105].
  • 1 <= Node.val <= 106
  • n == queries.length
  • 1 <= n <= 105
  • 1 <= queries[i] <= 106

Solution: Convert to sorted array

Since we don’t know whether the tree is balanced or not, the safest and easiest way is to convert the tree into a sorted array using inorder traversal. Or just any traversal and sort the array later on.

Once we have a sorted array, we can use lower_bound / upper_bound to query.

Time complexity: O(qlogn)
Space complexity: O(n)

C++

One binary search per query.

C++

花花酱 LeetCode 2265. Count Nodes Equal to Average of Subtree

Given the root of a binary tree, return the number of nodes where the value of the node is equal to the average of the values in its subtree.

Note:

  • The average of n elements is the sum of the n elements divided by n and rounded down to the nearest integer.
  • subtree of root is a tree consisting of root and all of its descendants.

Example 1:

Input: root = [4,8,5,0,1,null,6]
Output: 5
Explanation: 
For the node with value 4: The average of its subtree is (4 + 8 + 5 + 0 + 1 + 6) / 6 = 24 / 6 = 4.
For the node with value 5: The average of its subtree is (5 + 6) / 2 = 11 / 2 = 5.
For the node with value 0: The average of its subtree is 0 / 1 = 0.
For the node with value 1: The average of its subtree is 1 / 1 = 1.
For the node with value 6: The average of its subtree is 6 / 1 = 6.

Example 2:

Input: root = [1]
Output: 1
Explanation: For the node with value 1: The average of its subtree is 1 / 1 = 1.

Constraints:

  • The number of nodes in the tree is in the range [1, 1000].
  • 0 <= Node.val <= 1000

Solution: Recursion

Time complexity: O(n)
Space complexity: O(h)

C++

花花酱 LeetCode 2236. Root Equals Sum of Children

You are given the root of a binary tree that consists of exactly 3 nodes: the root, its left child, and its right child.

Return true if the value of the root is equal to the sum of the values of its two children, or false otherwise.

Example 1:

Input: root = [10,4,6]
Output: true
Explanation: The values of the root, its left child, and its right child are 10, 4, and 6, respectively.
10 is equal to 4 + 6, so we return true.

Example 2:

Input: root = [5,3,1]
Output: false
Explanation: The values of the root, its left child, and its right child are 5, 3, and 1, respectively.
5 is not equal to 3 + 1, so we return false.

Constraints:

  • The tree consists only of the root, its left child, and its right child.
  • -100 <= Node.val <= 100

Solution:

Just want to check whether you know binary tree or not.

Time complexity: O(1)
Space complexity: O(1)

C++

花花酱 LeetCode 2196. Create Binary Tree From Descriptions

You are given a 2D integer array descriptions where descriptions[i] = [parenti, childi, isLefti] indicates that parenti is the parent of childi in a binary tree of unique values. Furthermore,

  • If isLefti == 1, then childi is the left child of parenti.
  • If isLefti == 0, then childi is the right child of parenti.

Construct the binary tree described by descriptions and return its root.

The test cases will be generated such that the binary tree is valid.

Example 1:

Input: descriptions = [[20,15,1],[20,17,0],[50,20,1],[50,80,0],[80,19,1]]
Output: [50,20,80,15,17,19]
Explanation: The root node is the node with value 50 since it has no parent.
The resulting binary tree is shown in the diagram.

Example 2:

Input: descriptions = [[1,2,1],[2,3,0],[3,4,1]]
Output: [1,2,null,null,3,4]
Explanation: The root node is the node with value 1 since it has no parent.
The resulting binary tree is shown in the diagram.

Constraints:

  • 1 <= descriptions.length <= 104
  • descriptions[i].length == 3
  • 1 <= parenti, childi <= 105
  • 0 <= isLefti <= 1
  • The binary tree described by descriptions is valid.

Solution: Hashtable + Recursion

  1. Use one hashtable to track the children of each node.
  2. Use another hashtable to track the parent of each node.
  3. Find the root who doesn’t have parent.
  4. Build the tree recursively from root.

Time complexity: O(n)
Space complexity: O(n)

C++