Press "Enter" to skip to content

Posts tagged as “xor”

花花酱 LeetCode 1542. Find Longest Awesome Substring

Given a string s. An awesome substring is a non-empty substring of s such that we can make any number of swaps in order to make it palindrome.

Return the length of the maximum length awesome substring of s.

Example 1:

Input: s = "3242415"
Output: 5
Explanation: "24241" is the longest awesome substring, we can form the palindrome "24142" with some swaps.

Example 2:

Input: s = "12345678"
Output: 1

Example 3:

Input: s = "213123"
Output: 6
Explanation: "213123" is the longest awesome substring, we can form the palindrome "231132" with some swaps.

Example 4:

Input: s = "00"
Output: 2

Constraints:

  • 1 <= s.length <= 10^5
  • s consists only of digits.

Solution: Prefix mask + Hashtable

For a palindrome all digits must occurred even times expect one. We can use a 10 bit mask to track the occurrence of each digit for prefix s[0~i]. 0 is even, 1 is odd.

We use a hashtable to track the first index of each prefix state.
If s[0~i] and s[0~j] have the same state which means every digits in s[i+1~j] occurred even times (zero is also even) and it’s an awesome string. Then (j – (i+1) + 1) = j – i is the length of the palindrome. So far so good.

But we still need to consider the case when there is a digit with odd occurrence. We can enumerate all possible ones from 0 to 9, and temporarily flip the bit of the digit and see whether that state happened before.

fisrt_index[0] = -1, first_index[*] = inf
ans = max(ans, j – first_index[mask])

Time complexity: O(n)
Space complexity: O(2^10) = O(1)

C++

Java

Python3

花花酱 LeetCode 1529. Bulb Switcher IV

There is a room with n bulbs, numbered from 0 to n-1, arranged in a row from left to right. Initially all the bulbs are turned off.

Your task is to obtain the configuration represented by target where target[i] is ‘1’ if the i-th bulb is turned on and is ‘0’ if it is turned off.

You have a switch to flip the state of the bulb, a flip operation is defined as follows:

  • Choose any bulb (index i) of your current configuration.
  • Flip each bulb from index i to n-1.

When any bulb is flipped it means that if it is 0 it changes to 1 and if it is 1 it changes to 0.

Return the minimum number of flips required to form target.

Example 1:

Input: target = "10111"
Output: 3
Explanation: Initial configuration "00000".
flip from the third bulb:  "00000" -> "00111"
flip from the first bulb:  "00111" -> "11000"
flip from the second bulb:  "11000" -> "10111"
We need at least 3 flip operations to form target.

Example 2:

Input: target = "101"
Output: 3
Explanation: "000" -> "111" -> "100" -> "101".

Example 3:

Input: target = "00000"
Output: 0

Example 4:

Input: target = "001011101"
Output: 5

Constraints:

  • 1 <= target.length <= 10^5
  • target[i] == '0' or target[i] == '1'

Solution: XOR

Flip from left to right, since flipping the a bulb won’t affect anything in the left.
We count how many times flipped so far, and that % 2 will be the state for all the bulb to the right.
If the current bulb’s state != target, we have to flip once.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1486. XOR Operation in an Array

Given an integer n and an integer start.

Define an array nums where nums[i] = start + 2*i (0-indexed) and n == nums.length.

Return the bitwise XOR of all elements of nums.

Example 1:

Input: n = 5, start = 0
Output: 8
Explanation: Array nums is equal to [0, 2, 4, 6, 8] where (0 ^ 2 ^ 4 ^ 6 ^ 8) = 8.
Where "^" corresponds to bitwise XOR operator.

Example 2:

Input: n = 4, start = 3
Output: 8
Explanation: Array nums is equal to [3, 5, 7, 9] where (3 ^ 5 ^ 7 ^ 9) = 8.

Example 3:

Input: n = 1, start = 7
Output: 7

Example 4:

Input: n = 10, start = 5
Output: 2

Constraints:

  • 1 <= n <= 1000
  • 0 <= start <= 1000
  • n == nums.length

Solution: Simulation

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1442. Count Triplets That Can Form Two Arrays of Equal XOR

Given an array of integers arr.

We want to select three indices ij and k where (0 <= i < j <= k < arr.length).

Let’s define a and b as follows:

  • a = arr[i] ^ arr[i + 1] ^ ... ^ arr[j - 1]
  • b = arr[j] ^ arr[j + 1] ^ ... ^ arr[k]

Note that ^ denotes the bitwise-xor operation.

Return the number of triplets (ij and k) Where a == b.

Example 1:

Input: arr = [2,3,1,6,7]
Output: 4
Explanation: The triplets are (0,1,2), (0,2,2), (2,3,4) and (2,4,4)

Example 2:

Input: arr = [1,1,1,1,1]
Output: 10

Example 3:

Input: arr = [2,3]
Output: 0

Example 4:

Input: arr = [1,3,5,7,9]
Output: 3

Example 5:

Input: arr = [7,11,12,9,5,2,7,17,22]
Output: 8

Constraints:

  • 1 <= arr.length <= 300
  • 1 <= arr[i] <= 10^8

Solution 1: Brute Force (TLE)

Time complexity: O(n^4)
Space complexity: O(1)

C++

Solution 2: Prefix XORs

Let xors[i] = arr[0] ^ arr[1] ^ … ^ arr[i-1]
arr[i] ^ arr[i + 1] ^ … ^ arr[j – 1] = (arr[0] ^ … ^ arr[j – 1]) ^ (arr[0] ^ … ^ arr[i-1]) = xors[j] ^ xors[i]

We then can compute a and b in O(1) time.

Time complexity: O(n^3)
Space complexity: O(n)

C++

Solution 3: Prefix XORs II

a = arr[i] ^ arr[i + 1] ^ … ^ arr[j – 1]
b = arr[j] ^ arr[j + 1] ^ … ^ arr[k]
a == b => a ^ b == 0
XORs(i ~ k) == 0
XORS(0 ~ k) ^ XORs(0 ~ i – 1) = 0

Problem => find all pairs of (i – 1, k) such that xors[k+1] == xors[i]
For each pair (i – 1, k), there are k – i positions we can insert j.

Time complexity: O(n^2)
Space complexity: O(1)

C++

Solution 3: HashTable

Similar to target sum, use a hashtable to store the frequency of each prefix xors.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1310. XOR Queries of a Subarray

Given the array arr of positive integers and the array queries where queries[i] = [Li, Ri], for each query i compute the XOR of elements from Li to Ri (that is, arr[Lixor arr[Li+1xor ... xor arr[Ri] ). Return an array containing the result for the given queries.

Example 1:

Input: arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]]
Output: [2,7,14,8] 
Explanation: 
The binary representation of the elements in the array are:
1 = 0001 
3 = 0011 
4 = 0100 
8 = 1000 
The XOR values for queries are:
[0,1] = 1 xor 3 = 2 
[1,2] = 3 xor 4 = 7 
[0,3] = 1 xor 3 xor 4 xor 8 = 14 
[3,3] = 8

Example 2:

Input: arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]]
Output: [8,0,4,4]

Constraints:

  • 1 <= arr.length <= 3 * 10^4
  • 1 <= arr[i] <= 10^9
  • 1 <= queries.length <= 3 * 10^4
  • queries[i].length == 2
  • 0 <= queries[i][0] <= queries[i][1] < arr.length

Solution: Prefix Sum

Time complexity: O(n) + O(q)
Space complexity: O(n)

C++

tby