Press "Enter" to skip to content

Posts tagged as “DFS”

花花酱 LeetCode 1467. Probability of a Two Boxes Having The Same Number of Distinct Balls

Given 2n balls of k distinct colors. You will be given an integer array balls of size k where balls[i] is the number of balls of color i

All the balls will be shuffled uniformly at random, then we will distribute the first n balls to the first box and the remaining n balls to the other box (Please read the explanation of the second example carefully).

Please note that the two boxes are considered different. For example, if we have two balls of colors a and b, and two boxes [] and (), then the distribution [a] (b) is considered different than the distribution [b] (a) (Please read the explanation of the first example carefully).

We want to calculate the probability that the two boxes have the same number of distinct balls.

Example 1:

Input: balls = [1,1]
Output: 1.00000
Explanation: Only 2 ways to divide the balls equally:
- A ball of color 1 to box 1 and a ball of color 2 to box 2
- A ball of color 2 to box 1 and a ball of color 1 to box 2
In both ways, the number of distinct colors in each box is equal. The probability is 2/2 = 1

Example 2:

Input: balls = [2,1,1]
Output: 0.66667
Explanation: We have the set of balls [1, 1, 2, 3]
This set of balls will be shuffled randomly and we may have one of the 12 distinct shuffles with equale probability (i.e. 1/12):
[1,1 / 2,3], [1,1 / 3,2], [1,2 / 1,3], [1,2 / 3,1], [1,3 / 1,2], [1,3 / 2,1], [2,1 / 1,3], [2,1 / 3,1], [2,3 / 1,1], [3,1 / 1,2], [3,1 / 2,1], [3,2 / 1,1]
After that we add the first two balls to the first box and the second two balls to the second box.
We can see that 8 of these 12 possible random distributions have the same number of distinct colors of balls in each box.
Probability is 8/12 = 0.66667

Example 3:

Input: balls = [1,2,1,2]
Output: 0.60000
Explanation: The set of balls is [1, 2, 2, 3, 4, 4]. It is hard to display all the 180 possible random shuffles of this set but it is easy to check that 108 of them will have the same number of distinct colors in each box.
Probability = 108 / 180 = 0.6

Example 4:

Input: balls = [3,2,1]
Output: 0.30000
Explanation: The set of balls is [1, 1, 1, 2, 2, 3]. It is hard to display all the 60 possible random shuffles of this set but it is easy to check that 18 of them will have the same number of distinct colors in each box.
Probability = 18 / 60 = 0.3

Example 5:

Input: balls = [6,6,6,6,6,6]
Output: 0.90327

Constraints:

  • 1 <= balls.length <= 8
  • 1 <= balls[i] <= 6
  • sum(balls) is even.
  • Answers within 10^-5 of the actual value will be accepted as correct.

Solution 0: Permutation (TLE)

Enumerate all permutations of the balls, count valid ones and divide that by the total.

Time complexity: O((8*6)!) = O(48!)
After deduplication: O(48!/(6!)^8) ~ 1.7e38
Space complexity: O(8*6)

C++

Solution 1: Combination

For each color, put n_i balls into box1, the left t_i – n_i balls go to box2.
permutations = fact(n//2) / PROD(fact(n_i)) * fact(n//2) * PROD(fact(t_i – n_i))
E.g
balls = [1×2, 2×6, 3×4]
One possible combination:
box1: 1 22 333
box2: 1 2222 3
permutations = 6! / (1! * 2! * 3!) * 6! / (1! * 4! * 1!) = 1800

Time complexity: O((t+1)^k) = O(7^8)
Space complexity: O(k + (t*k)) = O(8 + 48)

C++

vector version

C++

花花酱 LeetCode 1415. The k-th Lexicographical String of All Happy Strings of Length n

happy string is a string that:

  • consists only of letters of the set ['a', 'b', 'c'].
  • s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).

For example, strings “abc”, “ac”, “b” and “abcbabcbcb” are all happy strings and strings “aa”, “baa” and “ababbc” are not happy strings.

Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.

Return the kth string of this list or return an empty string if there are less than k happy strings of length n.

Example 1:

Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".

Example 2:

Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.

Example 3:

Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"

Example 4:

Input: n = 2, k = 7
Output: ""

Example 5:

Input: n = 10, k = 100
Output: "abacbabacb"

Constraints:

  • 1 <= n <= 10
  • 1 <= k <= 100

Solution: DFS

Generate the happy strings in lexical order, store the k-th one.
Time complexity: O(n + k)
Space complexity: O(n)

C++

花花酱 LeetCode 306. Additive Number

Additive number is a string whose digits can form additive sequence.

A valid additive sequence should contain at least three numbers. Except for the first two numbers, each subsequent number in the sequence must be the sum of the preceding two.

Given a string containing only digits '0'-'9', write a function to determine if it’s an additive number.

Note: Numbers in the additive sequence cannot have leading zeros, so sequence 1, 2, 03 or 1, 02, 3 is invalid.

Example 1:

Input: "112358"
Output: true
Explanation: The digits can form an additive sequence: 1, 1, 2, 3, 5, 8. 
             1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8

Example 2:

Input: "199100199"
Output: true
Explanation: The additive sequence is: 1, 99, 100, 199. 
             1 + 99 = 100, 99 + 100 = 199

Constraints:

  • num consists only of digits '0'-'9'.
  • 1 <= num.length <= 35

Solution: DFS

Time complexity: O(n^2)
Space complexity: O(n)

C++

Python3

花花酱 LeetCode 529. Minesweeper

Let’s play the minesweeper game (Wikipediaonline game)!

You are given a 2D char matrix representing the game board. ‘M’ represents an unrevealed mine, ‘E’ represents an unrevealed empty square, ‘B’ represents a revealed blank square that has no adjacent (above, below, left, right, and all 4 diagonals) mines, digit (‘1’ to ‘8’) represents how many mines are adjacent to this revealed square, and finally ‘X’ represents a revealed mine.

Now given the next click position (row and column indices) among all the unrevealed squares (‘M’ or ‘E’), return the board after revealing this position according to the following rules:

  1. If a mine (‘M’) is revealed, then the game is over – change it to ‘X’.
  2. If an empty square (‘E’) with no adjacent mines is revealed, then change it to revealed blank (‘B’) and all of its adjacent unrevealed squares should be revealed recursively.
  3. If an empty square (‘E’) with at least one adjacent mine is revealed, then change it to a digit (‘1’ to ‘8’) representing the number of adjacent mines.
  4. Return the board when no more squares will be revealed.

Example 1:

Input: 

[['E', 'E', 'E', 'E', 'E'],
 ['E', 'E', 'M', 'E', 'E'],
 ['E', 'E', 'E', 'E', 'E'],
 ['E', 'E', 'E', 'E', 'E']]

Click : [3,0]

Output: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'M', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

Explanation:

Example 2:

Input: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'M', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

Click : [1,2]

Output: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'X', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

Explanation:

Note:

  1. The range of the input matrix’s height and width is [1,50].
  2. The click position will only be an unrevealed square (‘M’ or ‘E’), which also means the input board contains at least one clickable square.
  3. The input board won’t be a stage when game is over (some mines have been revealed).
  4. For simplicity, not mentioned rules should be ignored in this problem. For example, you don’t need to reveal all the unrevealed mines when the game is over, consider any cases that you will win the game or flag any squares.

Solution: DFS

Time complexity: O(m*n)
Space complexity: O(m* n)

C++

Solution 2: BFS

Python3

花花酱 LeetCode 1376. Time Needed to Inform All Employees

A company has n employees with a unique ID for each employee from 0 to n - 1. The head of the company has is the one with headID.

Each employee has one direct manager given in the manager array where manager[i] is the direct manager of the i-th employee, manager[headID] = -1. Also it’s guaranteed that the subordination relationships have a tree structure.

The head of the company wants to inform all the employees of the company of an urgent piece of news. He will inform his direct subordinates and they will inform their subordinates and so on until all employees know about the urgent news.

The i-th employee needs informTime[i] minutes to inform all of his direct subordinates (i.e After informTime[i] minutes, all his direct subordinates can start spreading the news).

Return the number of minutes needed to inform all the employees about the urgent news.

Example 1:

Input: n = 1, headID = 0, manager = [-1], informTime = [0]
Output: 0
Explanation: The head of the company is the only employee in the company.

Example 2:

Input: n = 6, headID = 2, manager = [2,2,-1,2,2,2], informTime = [0,0,1,0,0,0]
Output: 1
Explanation: The head of the company with id = 2 is the direct manager of all the employees in the company and needs 1 minute to inform them all.
The tree structure of the employees in the company is shown.

Example 3:

Input: n = 7, headID = 6, manager = [1,2,3,4,5,6,-1], informTime = [0,6,5,4,3,2,1]
Output: 21
Explanation: The head has id = 6. He will inform employee with id = 5 in 1 minute.
The employee with id = 5 will inform the employee with id = 4 in 2 minutes.
The employee with id = 4 will inform the employee with id = 3 in 3 minutes.
The employee with id = 3 will inform the employee with id = 2 in 4 minutes.
The employee with id = 2 will inform the employee with id = 1 in 5 minutes.
The employee with id = 1 will inform the employee with id = 0 in 6 minutes.
Needed time = 1 + 2 + 3 + 4 + 5 + 6 = 21.

Example 4:

Input: n = 15, headID = 0, manager = [-1,0,0,1,1,2,2,3,3,4,4,5,5,6,6], informTime = [1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
Output: 3
Explanation: The first minute the head will inform employees 1 and 2.
The second minute they will inform employees 3, 4, 5 and 6.
The third minute they will inform the rest of employees.

Example 5:

Input: n = 4, headID = 2, manager = [3,3,-1,2], informTime = [0,0,162,914]
Output: 1076

Constraints:

  • 1 <= n <= 10^5
  • 0 <= headID < n
  • manager.length == n
  • 0 <= manager[i] < n
  • manager[headID] == -1
  • informTime.length == n
  • 0 <= informTime[i] <= 1000
  • informTime[i] == 0 if employee i has no subordinates.
  • It is guaranteed that all the employees can be informed.

Solution 1: Build the graph + DFS

Time complexity: O(n)
Space complexity: O(n)

C++

Solution 2: Recursion with memoization

Time complexity: O(n)
Space complexity: O(n)

C++

Python3