Press "Enter" to skip to content

Posts tagged as “DFS”

花花酱 LeetCode 1849. Splitting a String Into Descending Consecutive Values

You are given a string s that consists of only digits.

Check if we can split s into two or more non-empty substrings such that the numerical values of the substrings are in descending order and the difference between numerical values of every two adjacent substrings is equal to 1.

  • For example, the string s = "0090089" can be split into ["0090", "089"] with numerical values [90,89]. The values are in descending order and adjacent values differ by 1, so this way is valid.
  • Another example, the string s = "001" can be split into ["0", "01"]["00", "1"], or ["0", "0", "1"]. However all the ways are invalid because they have numerical values [0,1][0,1], and [0,0,1] respectively, all of which are not in descending order.

Return true if it is possible to split s​​​​​​ as described above, or false otherwise.

substring is a contiguous sequence of characters in a string.

Example 1:

Input: s = "1234"
Output: false
Explanation: There is no valid way to split s.

Example 2:

Input: s = "050043"
Output: true
Explanation: s can be split into ["05", "004", "3"] with numerical values [5,4,3].
The values are in descending order with adjacent values differing by 1.

Example 3:

Input: s = "9080701"
Output: false
Explanation: There is no valid way to split s.

Example 4:

Input: s = "10009998"
Output: true
Explanation: s can be split into ["100", "099", "98"] with numerical values [100,99,98].
The values are in descending order with adjacent values differing by 1.

Constraints:

  • 1 <= s.length <= 20
  • s only consists of digits.

Solution: DFS

Time complexity: O(2n)
Space complexity: O(n)

C++

花花酱 LeetCode 1815. Maximum Number of Groups Getting Fresh Donuts

There is a donuts shop that bakes donuts in batches of batchSize. They have a rule where they must serve all of the donuts of a batch before serving any donuts of the next batch. You are given an integer batchSize and an integer array groups, where groups[i] denotes that there is a group of groups[i] customers that will visit the shop. Each customer will get exactly one donut.

When a group visits the shop, all customers of the group must be served before serving any of the following groups. A group will be happy if they all get fresh donuts. That is, the first customer of the group does not receive a donut that was left over from the previous group.

You can freely rearrange the ordering of the groups. Return the maximum possible number of happy groups after rearranging the groups.

Example 1:

Input: batchSize = 3, groups = [1,2,3,4,5,6]
Output: 4
Explanation: You can arrange the groups as [6,2,4,5,1,3]. Then the 1st, 2nd, 4th, and 6th groups will be happy.

Example 2:

Input: batchSize = 4, groups = [1,3,2,5,2,2,1,6]
Output: 4

Constraints:

  • 1 <= batchSize <= 9
  • 1 <= groups.length <= 30
  • 1 <= groups[i] <= 109

Solution 0: Binary Mask DP

Time complexity: O(n*2n) TLE
Space complexity: O(2n)

C++

Solution 1: Recursion w/ Memoization

State: count of group size % batchSize

C++

C++/Hashtable

C++/OPT

花花酱 LeetCode 1774. Closest Dessert Cost

You would like to make dessert and are preparing to buy the ingredients. You have n ice cream base flavors and m types of toppings to choose from. You must follow these rules when making your dessert:

  • There must be exactly one ice cream base.
  • You can add one or more types of topping or have no toppings at all.
  • There are at most two of each type of topping.

You are given three inputs:

  • baseCosts, an integer array of length n, where each baseCosts[i] represents the price of the ith ice cream base flavor.
  • toppingCosts, an integer array of length m, where each toppingCosts[i] is the price of one of the ith topping.
  • target, an integer representing your target price for dessert.

You want to make a dessert with a total cost as close to target as possible.

Return the closest possible cost of the dessert to target. If there are multiple, return the lower one.

Example 1:

Input: baseCosts = [1,7], toppingCosts = [3,4], target = 10
Output: 10
Explanation: Consider the following combination (all 0-indexed):
- Choose base 1: cost 7
- Take 1 of topping 0: cost 1 x 3 = 3
- Take 0 of topping 1: cost 0 x 4 = 0
Total: 7 + 3 + 0 = 10.

Example 2:

Input: baseCosts = [2,3], toppingCosts = [4,5,100], target = 18
Output: 17
Explanation: Consider the following combination (all 0-indexed):
- Choose base 1: cost 3
- Take 1 of topping 0: cost 1 x 4 = 4
- Take 2 of topping 1: cost 2 x 5 = 10
- Take 0 of topping 2: cost 0 x 100 = 0
Total: 3 + 4 + 10 + 0 = 17. You cannot make a dessert with a total cost of 18.

Example 3:

Input: baseCosts = [3,10], toppingCosts = [2,5], target = 9
Output: 8
Explanation: It is possible to make desserts with cost 8 and 10. Return 8 as it is the lower cost.

Example 4:

Input: baseCosts = [10], toppingCosts = [1], target = 1
Output: 10
Explanation: Notice that you don't have to have any toppings, but you must have exactly one base.

Constraints:

  • n == baseCosts.length
  • m == toppingCosts.length
  • 1 <= n, m <= 10
  • 1 <= baseCosts[i], toppingCosts[i] <= 104
  • 1 <= target <= 104

Solution: DP / Knapsack

Pre-compute the costs of all possible combinations of toppings.

Time complexity: O(sum(toppings) * 2 * (m + n)) ~ O(10^6)
Space complexity: O(sum(toppings)) ~ O(10^5)

C++

Solution 2: DFS

Combination

Time complexity: O(3^m * n)
Space complexity: O(m)

C++

花花酱 LeetCode 1766. Tree of Coprimes

There is a tree (i.e., a connected, undirected graph that has no cycles) consisting of n nodes numbered from 0 to n - 1 and exactly n - 1 edges. Each node has a value associated with it, and the root of the tree is node 0.

To represent this tree, you are given an integer array nums and a 2D array edges. Each nums[i] represents the ith node’s value, and each edges[j] = [uj, vj] represents an edge between nodes uj and vj in the tree.

Two values x and y are coprime if gcd(x, y) == 1 where gcd(x, y) is the greatest common divisor of x and y.

An ancestor of a node i is any other node on the shortest path from node i to the root. A node is not considered an ancestor of itself.

Return an array ans of size nwhere ans[i] is the closest ancestor to node i such that nums[i] and nums[ans[i]] are coprime, or -1 if there is no such ancestor.

Example 1:

Input: nums = [2,3,3,2], edges = [[0,1],[1,2],[1,3]]
Output: [-1,0,0,1]
Explanation: In the above figure, each node's value is in parentheses.
- Node 0 has no coprime ancestors.
- Node 1 has only one ancestor, node 0. Their values are coprime (gcd(2,3) == 1).
- Node 2 has two ancestors, nodes 1 and 0. Node 1's value is not coprime (gcd(3,3) == 3), but node 0's
  value is (gcd(2,3) == 1), so node 0 is the closest valid ancestor.
- Node 3 has two ancestors, nodes 1 and 0. It is coprime with node 1 (gcd(3,2) == 1), so node 1 is its
  closest valid ancestor.

Example 2:

Input: nums = [5,6,10,2,3,6,15], edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]]
Output: [-1,0,-1,0,0,0,-1]

Constraints:

  • nums.length == n
  • 1 <= nums[i] <= 50
  • 1 <= n <= 105
  • edges.length == n - 1
  • edges[j].length == 2
  • 0 <= uj, vj < n
  • uj != vj

Solution: DFS + Stack

Pre-compute for coprimes for each number.

For each node, enumerate all it’s coprime numbers, find the deepest occurrence.

Time complexity: O(n * max(nums))
Space complexity: O(n)

C++

花花酱 LeetCode 1718. Construct the Lexicographically Largest Valid Sequence

Given an integer n, find a sequence that satisfies all of the following:

  • The integer 1 occurs once in the sequence.
  • Each integer between 2 and n occurs twice in the sequence.
  • For every integer i between 2 and n, the distance between the two occurrences of i is exactly i.

The distance between two numbers on the sequence, a[i] and a[j], is the absolute difference of their indices, |j - i|.

Return the lexicographically largest sequence. It is guaranteed that under the given constraints, there is always a solution.

A sequence a is lexicographically larger than a sequence b (of the same length) if in the first position where a and b differ, sequence a has a number greater than the corresponding number in b. For example, [0,1,9,0] is lexicographically larger than [0,1,5,6] because the first position they differ is at the third number, and 9 is greater than 5.

Example 1:

Input: n = 3
Output: [3,1,2,3,2]
Explanation: [2,3,2,1,3] is also a valid sequence, but [3,1,2,3,2] is the lexicographically largest valid sequence.

Example 2:

Input: n = 5
Output: [5,3,1,4,3,5,2,4,2]

Constraints:

  • 1 <= n <= 20

Solution: Search

Search from left to right, largest to smallest.

Time complexity: O(n!)?
Space complexity: O(n)

C++

Java

Python3