# Posts tagged as “sort”

Given the array nums consisting of n positive integers. You computed the sum of all non-empty continous subarrays from the array and then sort them in non-decreasing order, creating a new array of n * (n + 1) / 2 numbers.

Return the sum of the numbers from index left to index right (indexed from 1), inclusive, in the new array. Since the answer can be a huge number return it modulo 10^9 + 7.

Example 1:

Input: nums = [1,2,3,4], n = 4, left = 1, right = 5
Output: 13
Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13.


Example 2:

Input: nums = [1,2,3,4], n = 4, left = 3, right = 4
Output: 6
Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.


Example 3:

Input: nums = [1,2,3,4], n = 4, left = 1, right = 10
Output: 50


Constraints:

• 1 <= nums.length <= 10^3
• nums.length == n
• 1 <= nums[i] <= 100
• 1 <= left <= right <= n * (n + 1) / 2

## Solution 1: Brute Force

Find sums of all the subarrays and sort the values.

Time complexity: O(n^2logn)
Space complexity: O(n^2)

## Solution 2: Priority Queue/ Min Heap

For each subarray, start with one element e.g nums[i], put them into a priority queue (min heap). Each time, we have the smallest subarray sum, and extend that subarray and put the new sum back into priority queue. Thought it has the same time complexity as the brute force one in worst case, but space complexity can be reduce to O(n).

Time complexity: O(n^2logn)
Space complexity: O(n)

## Solution 3: Binary Search + Sliding Window

Use binary search to find S s.t. that there are at least k subarrys have sum <= S.

Given S, we can use sliding window to count how many subarrays have sum <= S and their total sum.

ans = sums_of_first(right) – sums_of_first(left – 1).

Time complexity: O(n * log(sum(nums))
Space complexity: O(n)

## C++

Given an array of integers arr and an integer k. Find the least number of unique integers after removing exactly k elements.

Example 1:

Input: arr = [5,5,4], k = 1
Output: 1
Explanation: Remove the single 4, only 5 is left.


Example 2:

Input: arr = [4,3,1,1,3,3,2], k = 3
Output: 2
Explanation: Remove 4, 2 and either one of the two 1s or three 3s. 1 and 3 will be left.

Constraints:

• 1 <= arr.length <= 10^5
• 1 <= arr[i] <= 10^9
• 0 <= k <= arr.length

## Solution: Greedy

Count the frequency of each unique number. Sort by frequency, remove items with lowest frequency first.

Time complexity: O(nlogn)
Space complexity: O(n)

## V3

A chef has collected data on the satisfaction level of his n dishes. Chef can cook any dish in 1 unit of time.

Like-time coefficient of a dish is defined as the time taken to cook that dish including previous dishes multiplied by its satisfaction level  i.e.  time[i]*satisfaction[i]

Return the maximum sum of Like-time coefficient that the chef can obtain after dishes preparation.

Dishes can be prepared in any order and the chef can discard some dishes to get this maximum value.

Example 1:

Input: satisfaction = [-1,-8,0,5,-9]
Output: 14
Explanation: After Removing the second and last dish, the maximum total Like-time coefficient will be equal to (-1*1 + 0*2 + 5*3 = 14). Each dish is prepared in one unit of time.

Example 2:

Input: satisfaction = [4,3,2]
Output: 20
Explanation: Dishes can be prepared in any order, (2*1 + 3*2 + 4*3 = 20)


Example 3:

Input: satisfaction = [-1,-4,-5]
Output: 0
Explanation: People don't like the dishes. No dish is prepared.


Example 4:

Input: satisfaction = [-2,5,-1,0,3,-3]
Output: 35


Constraints:

• n == satisfaction.length
• 1 <= n <= 500
• -10^3 <= satisfaction[i] <= 10^3

## Solution 1: Sort+ Brute Force

Time complexity: O(nlogn + n^2)
Space complexity: O(1)

## Solution 2: Sort + prefix sum

Sort in reverse order, accumulate prefix sum until prefix sum <= 0.

Time complexity: O(nlogn + n)
Space complexity: O(1)

[9, 8, 5, 2, 1, -1]
sum = 9 * 4 + 8 * 3 + 2 * 3 + 1 * 2 + -1 * 1
<=>
sum += 9
sum += (9 + 8 = 17)
sum += (17 + 2 = 19)
sum += (19 + 1 = 20)
sum += (20 – 1 = 19)

## C++

Given two integer arrays arr1 and arr2, and the integer dreturn the distance value between the two arrays.

The distance value is defined as the number of elements arr1[i] such that there is not any element arr2[j] where |arr1[i]-arr2[j]| <= d.

Example 1:

Input: arr1 = [4,5,8], arr2 = [10,9,1,8], d = 2
Output: 2
Explanation:
For arr1[0]=4 we have:
|4-10|=6 > d=2
|4-9|=5 > d=2
|4-1|=3 > d=2
|4-8|=4 > d=2
For arr1[1]=5 we have:
|5-10|=5 > d=2
|5-9|=4 > d=2
|5-1|=4 > d=2
|5-8|=3 > d=2
For arr1[2]=8 we have:
|8-10|=2 <= d=2
|8-9|=1 <= d=2
|8-1|=7 > d=2
|8-8|=0 <= d=2


Example 2:

Input: arr1 = [1,4,2,3], arr2 = [-4,-3,6,10,20,30], d = 3
Output: 2


Example 3:

Input: arr1 = [2,1,100,3], arr2 = [-5,-2,10,-3,7], d = 6
Output: 1


Constraints:

• 1 <= arr1.length, arr2.length <= 500
• -10^3 <= arr1[i], arr2[j] <= 10^3
• 0 <= d <= 100

## Solution 1: All pairs

Time complexity: O(m*n)
Space complexity: O(1)

## Solution 2: Two Pointers

Sort arr1 in ascending order and sort arr2 in descending order.
Time complexity: O(mlogm + nlogn + m + n)
Space complexity: O(1)

## Solution 3: Binary Search

Sort arr2 in ascending order. and do two binary searches for each element to determine the range of [a-d, a+d], if that range is empty we increase the counter

Time complexity: O(mlogm + nlogm)
Space complexity: O(1)

## C++

Mission News Theme by Compete Themes.