Posts tagged as “frequency”

You are given an array nums consisting of positive integers.

Return the total frequencies of elements in nums such that those elements all have the maximum frequency.

The frequency of an element is the number of occurrences of that element in the array.

Example 1:

Input: nums = [1,2,2,3,1,4]
Output: 4
Explanation: The elements 1 and 2 have a frequency of 2 which is the maximum frequency in the array.
So the number of elements in the array with maximum frequency is 4.


Example 2:

Input: nums = [1,2,3,4,5]
Output: 5
Explanation: All elements of the array have a frequency of 1 which is the maximum.
So the number of elements in the array with maximum frequency is 5.


Constraints:

• 1 <= nums.length <= 100
• 1 <= nums[i] <= 100

Solution: Hashtable

Use a hashtable to store the frequency of each element, and compare it with a running maximum frequency. Reset answer if current frequency is greater than maximum frequency. Increment the answer if current frequency is equal to the maximum frequency.

Time complexity: O(n)
Space complexity: O(n)

C++

// Author: Huahua

The beauty of a string is the difference in frequencies between the most frequent and least frequent characters.

• For example, the beauty of "abaacc" is 3 - 1 = 2.

Given a string s, return the sum of beauty of all of its substrings.

Example 1:

Input: s = "aabcb"
Output: 5
Explanation: The substrings with non-zero beauty are ["aab","aabc","aabcb","abcb","bcb"], each with beauty equal to 1.

Example 2:

Input: s = "aabcbaa"
Output: 17


Constraints:

• 1 <= s.length <=500
• s consists of only lowercase English letters.

Solution: Treemap

Time complexity: O(n2log26)
Space complexity: O(26)

C++

A string s is called good if there are no two different characters in s that have the same frequency.

Given a string s, return the minimum number of characters you need to delete to make s good.

The frequency of a character in a string is the number of times it appears in the string. For example, in the string "aab", the frequency of 'a' is 2, while the frequency of 'b' is 1.

Example 1:

Input: s = "aab"
Output: 0
Explanation: s is already good.


Example 2:

Input: s = "aaabbbcc"
Output: 2
Explanation: You can delete two 'b's resulting in the good string "aaabcc".
Another way it to delete one 'b' and one 'c' resulting in the good string "aaabbc".

Example 3:

Input: s = "ceabaacb"
Output: 2
Explanation: You can delete both 'c's resulting in the good string "eabaab".
Note that we only care about characters that are still in the string at the end (i.e. frequency of 0 is ignored).


Constraints:

• 1 <= s.length <= 105
• s contains only lowercase English letters.

Solution: Hashtable

The deletion order doesn’t matter, we can process from ‘a’ to ‘z’. Use a hashtable to store the “final frequency” so far, for each char, decrease its frequency until it becomes unique in the final frequency hashtable.

Time complexity: O(n + 26^2)
Space complexity: O(26)

C++

Given two arrays of integers nums1 and nums2, return the number of triplets formed (type 1 and type 2) under the following rules:

• Type 1: Triplet (i, j, k) if nums1[i]2 == nums2[j] * nums2[k] where 0 <= i < nums1.length and 0 <= j < k < nums2.length.
• Type 2: Triplet (i, j, k) if nums2[i]2 == nums1[j] * nums1[k] where 0 <= i < nums2.length and 0 <= j < k < nums1.length.

Example 1:

Input: nums1 = [7,4], nums2 = [5,2,8,9]
Output: 1
Explanation: Type 1: (1,1,2), nums1[1]^2 = nums2[1] * nums2[2]. (4^2 = 2 * 8).


Example 2:

Input: nums1 = [1,1], nums2 = [1,1,1]
Output: 9
Explanation: All Triplets are valid, because 1^2 = 1 * 1.
Type 1: (0,0,1), (0,0,2), (0,1,2), (1,0,1), (1,0,2), (1,1,2).  nums1[i]^2 = nums2[j] * nums2[k].
Type 2: (0,0,1), (1,0,1), (2,0,1). nums2[i]^2 = nums1[j] * nums1[k].


Example 3:

Input: nums1 = [7,7,8,3], nums2 = [1,2,9,7]
Output: 2
Explanation: There are 2 valid triplets.
Type 1: (3,0,2).  nums1[3]^2 = nums2[0] * nums2[2].
Type 2: (3,0,1).  nums2[3]^2 = nums1[0] * nums1[1].


Example 4:

Input: nums1 = [4,7,9,11,23], nums2 = [3,5,1024,12,18]
Output: 0
Explanation: There are no valid triplets.


Constraints:

• 1 <= nums1.length, nums2.length <= 1000
• 1 <= nums1[i], nums2[i] <= 10^5

Solution: Hashtable

For each number y in the second array, count its frequency.

For each number x in the first, if x * x % y == 0, let r = x * x / y
if r == y: ans += f[y] * f[y-1]
else ans += f[y] * f[r]

Final ans /= 2

Time complexity: O(n)
Space complexity: O(n)

C++

You are given a string s, a split is called good if you can split s into 2 non-empty strings p and q where its concatenation is equal to s and the number of distinct letters in p and q are the same.

Return the number of good splits you can make in s.

Example 1:

Input: s = "aacaba"
Output: 2
Explanation: There are 5 ways to split "aacaba" and 2 of them are good.
("a", "acaba") Left string and right string contains 1 and 3 different letters respectively.
("aa", "caba") Left string and right string contains 1 and 3 different letters respectively.
("aac", "aba") Left string and right string contains 2 and 2 different letters respectively (good split).
("aaca", "ba") Left string and right string contains 2 and 2 different letters respectively (good split).
("aacab", "a") Left string and right string contains 3 and 1 different letters respectively.


Example 2:

Input: s = "abcd"
Output: 1
Explanation: Split the string as follows ("ab", "cd").


Example 3:

Input: s = "aaaaa"
Output: 4
Explanation: All possible splits are good.

Example 4:

Input: s = "acbadbaada"
Output: 2


Constraints:

• s contains only lowercase English letters.
• 1 <= s.length <= 10^5

Solution: Sliding Window

1. Count the frequency of each letter and count number of unique letters for the entire string as right part.
2. Iterate over the string, add current letter to the left part, and remove it from the right part.
3. We only
1. increase the number of unique letters when its frequency becomes to 1
2. decrease the number of unique letters when its frequency becomes to 0

Time complexity: O(n)
Space complexity: O(1)