# Posts published in “Priority Queue”

You are given an array of non-negative integers nums and an integer k. In one operation, you may choose any element from nums and increment it by 1.

Return the maximum product of nums after at most k operations. Since the answer may be very large, return it modulo 109 + 7.

Example 1:

Input: nums = [0,4], k = 5
Output: 20
Explanation: Increment the first number 5 times.
Now nums = [5, 4], with a product of 5 * 4 = 20.
It can be shown that 20 is maximum product possible, so we return 20.
Note that there may be other ways to increment nums to have the maximum product.


Example 2:

Input: nums = [6,3,3,2], k = 2
Output: 216
Explanation: Increment the second number 1 time and increment the fourth number 1 time.
Now nums = [6, 4, 3, 3], with a product of 6 * 4 * 3 * 3 = 216.
It can be shown that 216 is maximum product possible, so we return 216.
Note that there may be other ways to increment nums to have the maximum product.


Constraints:

• 1 <= nums.length, k <= 105
• 0 <= nums[i] <= 106

## Solution: priority queue

Always increment the smallest number. Proof?

Time complexity: O(klogn + nlogn)
Space complexity: O(n)

## C++

There is a party where n friends numbered from 0 to n - 1 are attending. There is an infinite number of chairs in this party that are numbered from 0 to infinity. When a friend arrives at the party, they sit on the unoccupied chair with the smallest number.

• For example, if chairs 01, and 5 are occupied when a friend comes, they will sit on chair number 2.

When a friend leaves the party, their chair becomes unoccupied at the moment they leave. If another friend arrives at that same moment, they can sit in that chair.

You are given a 0-indexed 2D integer array times where times[i] = [arrivali, leavingi], indicating the arrival and leaving times of the ith friend respectively, and an integer targetFriend. All arrival times are distinct.

Return the chair number that the friend numbered targetFriend will sit on.

Example 1:

Input: times = [[1,4],[2,3],[4,6]], targetFriend = 1
Output: 1
Explanation:
- Friend 0 arrives at time 1 and sits on chair 0.
- Friend 1 arrives at time 2 and sits on chair 1.
- Friend 1 leaves at time 3 and chair 1 becomes empty.
- Friend 0 leaves at time 4 and chair 0 becomes empty.
- Friend 2 arrives at time 4 and sits on chair 0.
Since friend 1 sat on chair 1, we return 1.


Example 2:

Input: times = [[3,10],[1,5],[2,6]], targetFriend = 0
Output: 2
Explanation:
- Friend 1 arrives at time 1 and sits on chair 0.
- Friend 2 arrives at time 2 and sits on chair 1.
- Friend 0 arrives at time 3 and sits on chair 2.
- Friend 1 leaves at time 5 and chair 0 becomes empty.
- Friend 2 leaves at time 6 and chair 1 becomes empty.
- Friend 0 leaves at time 10 and chair 2 becomes empty.
Since friend 0 sat on chair 2, we return 2.


Constraints:

• n == times.length
• 2 <= n <= 104
• times[i].length == 2
• 1 <= arrivali < leavingi <= 105
• 0 <= targetFriend <= n - 1
• Each arrivali time is distinct.

## Solution: Treeset + Simulation

Use a treeset to track available chairs, sort events by time.
note: process leaving events first.

Time complexity: O(nlogn)
Space complexity: O(n)

## C++

You are given a 2D integer array intervals, where intervals[i] = [lefti, righti] describes the ith interval starting at lefti and ending at righti (inclusive). The size of an interval is defined as the number of integers it contains, or more formally righti - lefti + 1.

You are also given an integer array queries. The answer to the jth query is the size of the smallest interval i such that lefti <= queries[j] <= righti. If no such interval exists, the answer is -1.

Return an array containing the answers to the queries.

Example 1:

Input: intervals = [[1,4],[2,4],[3,6],[4,4]], queries = [2,3,4,5]
Output: [3,3,1,4]
Explanation: The queries are processed as follows:
- Query = 2: The interval [2,4] is the smallest interval containing 2. The answer is 4 - 2 + 1 = 3.
- Query = 3: The interval [2,4] is the smallest interval containing 3. The answer is 4 - 2 + 1 = 3.
- Query = 4: The interval [4,4] is the smallest interval containing 4. The answer is 4 - 4 + 1 = 1.
- Query = 5: The interval [3,6] is the smallest interval containing 5. The answer is 6 - 3 + 1 = 4.


Example 2:

Input: intervals = [[2,3],[2,5],[1,8],[20,25]], queries = [2,19,5,22]
Output: [2,-1,4,6]
Explanation: The queries are processed as follows:
- Query = 2: The interval [2,3] is the smallest interval containing 2. The answer is 3 - 2 + 1 = 2.
- Query = 19: None of the intervals contain 19. The answer is -1.
- Query = 5: The interval [2,5] is the smallest interval containing 5. The answer is 5 - 2 + 1 = 4.
- Query = 22: The interval [20,25] is the smallest interval containing 22. The answer is 25 - 20 + 1 = 6.


Constraints:

• 1 <= intervals.length <= 105
• 1 <= queries.length <= 105
• intervals[i].length == 2
• 1 <= lefti <= righti <= 107
• 1 <= queries[j] <= 107

## Solution: Offline Processing+ Priority Queue

Similar to 花花酱 LeetCode 1847. Closest Room

Sort intervals by right in descending order, sort queries in descending. Add valid intervals into the priority queue (or treeset) ordered by size in ascending order. Erase invalid ones. The first one (if any) will be the one with the smallest size that contains the current query.

Time complexity: O(nlogn + mlogm + mlogn)
Space complexity: O(m + n)

## C++

You are given a 2D integer array orders, where each orders[i] = [pricei, amounti, orderTypei] denotes that amountiorders have been placed of type orderTypei at the price pricei. The orderTypei is:

• 0 if it is a batch of buy orders, or
• 1 if it is a batch of sell orders.

Note that orders[i] represents a batch of amounti independent orders with the same price and order type. All orders represented by orders[i] will be placed before all orders represented by orders[i+1] for all valid i.

There is a backlog that consists of orders that have not been executed. The backlog is initially empty. When an order is placed, the following happens:

• If the order is a buy order, you look at the sell order with the smallest price in the backlog. If that sell order’s price is smaller than or equal to the current buy order’s price, they will match and be executed, and that sell order will be removed from the backlog. Else, the buy order is added to the backlog.
• Vice versa, if the order is a sell order, you look at the buy order with the largest price in the backlog. If that buy order’s price is larger than or equal to the current sell order’s price, they will match and be executed, and that buy order will be removed from the backlog. Else, the sell order is added to the backlog.

Return the total amount of orders in the backlog after placing all the orders from the input. Since this number can be large, return it modulo 109 + 7.

Example 1: Input: orders = [[10,5,0],[15,2,1],[25,1,1],[30,4,0]]
Output: 6
Explanation: Here is what happens with the orders:
- 5 orders of type buy with price 10 are placed. There are no sell orders, so the 5 orders are added to the backlog.
- 2 orders of type sell with price 15 are placed. There are no buy orders with prices larger than or equal to 15, so the 2 orders are added to the backlog.
- 1 order of type sell with price 25 is placed. There are no buy orders with prices larger than or equal to 25 in the backlog, so this order is added to the backlog.
- 4 orders of type buy with price 30 are placed. The first 2 orders are matched with the 2 sell orders of the least price, which is 15 and these 2 sell orders are removed from the backlog. The 3rd order is matched with the sell order of the least price, which is 25 and this sell order is removed from the backlog. Then, there are no more sell orders in the backlog, so the 4th order is added to the backlog.
Finally, the backlog has 5 buy orders with price 10, and 1 buy order with price 30. So the total number of orders in the backlog is 6.


Example 2: Input: orders = [[7,1000000000,1],[15,3,0],[5,999999995,0],[5,1,1]]
Output: 999999984
Explanation: Here is what happens with the orders:
- 109 orders of type sell with price 7 are placed. There are no buy orders, so the 109 orders are added to the backlog.
- 3 orders of type buy with price 15 are placed. They are matched with the 3 sell orders with the least price which is 7, and those 3 sell orders are removed from the backlog.
- 999999995 orders of type buy with price 5 are placed. The least price of a sell order is 7, so the 999999995 orders are added to the backlog.
- 1 order of type sell with price 5 is placed. It is matched with the buy order of the highest price, which is 5, and that buy order is removed from the backlog.
Finally, the backlog has (1000000000-3) sell orders with price 7, and (999999995-1) buy orders with price 5. So the total number of orders = 1999999991, which is equal to 999999984 % (109 + 7).


Constraints:

• 1 <= orders.length <= 105
• orders[i].length == 3
• 1 <= pricei, amounti <= 109
• orderTypei is either 0 or 1.

## Solution: Treemap / PriorityQueue / Heap

sell backlog: min heap
Trade happens between the tops of two queues.

Time complexity: O(nlogn)
Space complexity: O(n)

## C++

There is a school that has classes of students and each class will be having a final exam. You are given a 2D integer array classes, where classes[i] = [passi, totali]. You know beforehand that in the ith class, there are totali total students, but only passi number of students will pass the exam.

You are also given an integer extraStudents. There are another extraStudents brilliant students that are guaranteed to pass the exam of any class they are assigned to. You want to assign each of the extraStudents students to a class in a way that maximizes the average pass ratio across all the classes.

The pass ratio of a class is equal to the number of students of the class that will pass the exam divided by the total number of students of the class. The average pass ratio is the sum of pass ratios of all the classes divided by the number of the classes.

Return the maximum possible average pass ratio after assigning the extraStudents students. Answers within 10-5 of the actual answer will be accepted.

Example 1:

Input: classes = [[1,2],[3,5],[2,2]], extraStudents = 2
Output: 0.78333
Explanation: You can assign the two extra students to the first class. The average pass ratio will be equal to (3/4 + 3/5 + 2/2) / 3 = 0.78333.


Example 2:

Input: classes = [[2,4],[3,9],[4,5],[2,10]], extraStudents = 4
Output: 0.53485


Constraints:

• 1 <= classes.length <= 105
• classes[i].length == 2
• 1 <= passi <= totali <= 105
• 1 <= extraStudents <= 105

## Solution: Greedy + Heap

Sort by the ratio increase potential (p + 1) / (t + 1) – p / t.

Time complexity: O((m+n)logn)
Space complexity: O(n)