# Posts published in “Graph”

You are given two 0-indexed strings source and target, both of length n and consisting of lowercase English letters. You are also given two 0-indexed character arrays original and changed, and an integer array cost, where cost[i] represents the cost of changing the character original[i] to the character changed[i].

You start with the string source. In one operation, you can pick a character x from the string and change it to the character y at a cost of z if there exists any index j such that cost[j] == zoriginal[j] == x, and changed[j] == y.

Return the minimum cost to convert the string source to the string target using any number of operations. If it is impossible to convert source to targetreturn -1.

Note that there may exist indices ij such that original[j] == original[i] and changed[j] == changed[i].

Example 1:

Input: source = "abcd", target = "acbe", original = ["a","b","c","c","e","d"], changed = ["b","c","b","e","b","e"], cost = [2,5,5,1,2,20]
Output: 28
Explanation: To convert the string "abcd" to string "acbe":
- Change value at index 1 from 'b' to 'c' at a cost of 5.
- Change value at index 2 from 'c' to 'e' at a cost of 1.
- Change value at index 2 from 'e' to 'b' at a cost of 2.
- Change value at index 3 from 'd' to 'e' at a cost of 20.
The total cost incurred is 5 + 1 + 2 + 20 = 28.
It can be shown that this is the minimum possible cost.


Example 2:

Input: source = "aaaa", target = "bbbb", original = ["a","c"], changed = ["c","b"], cost = [1,2]
Output: 12
Explanation: To change the character 'a' to 'b' change the character 'a' to 'c' at a cost of 1, followed by changing the character 'c' to 'b' at a cost of 2, for a total cost of 1 + 2 = 3. To change all occurrences of 'a' to 'b', a total cost of 3 * 4 = 12 is incurred.


Example 3:

Input: source = "abcd", target = "abce", original = ["a"], changed = ["e"], cost = [10000]
Output: -1
Explanation: It is impossible to convert source to target because the value at index 3 cannot be changed from 'd' to 'e'.


Constraints:

• 1 <= source.length == target.length <= 105
• sourcetarget consist of lowercase English letters.
• 1 <= cost.length == original.length == changed.length <= 2000
• original[i]changed[i] are lowercase English letters.
• 1 <= cost[i] <= 106
• original[i] != changed[i]

## Solution: All pairs shortest path

Compute the shortest path (min cost) for any given letter pairs.

Time complexity: O(26^3 + m + n)
Space complexity: O(26^2)

## C++

You are given an array start where start = [startX, startY] represents your initial position (startX, startY) in a 2D space. You are also given the array target where target = [targetX, targetY] represents your target position (targetX, targetY).

The cost of going from a position (x1, y1) to any other position in the space (x2, y2) is |x2 - x1| + |y2 - y1|.

There are also some special roads. You are given a 2D array specialRoads where specialRoads[i] = [x1i, y1i, x2i, y2i, costi] indicates that the ith special road can take you from (x1i, y1i) to (x2i, y2i) with a cost equal to costi. You can use each special road any number of times.

Return the minimum cost required to go from (startX, startY) to (targetX, targetY).

Example 1:

Input: start = [1,1], target = [4,5], specialRoads = [[1,2,3,3,2],[3,4,4,5,1]]
Output: 5
Explanation: The optimal path from (1,1) to (4,5) is the following:
- (1,1) -> (1,2). This move has a cost of |1 - 1| + |2 - 1| = 1.
- (1,2) -> (3,3). This move uses the first special edge, the cost is 2.
- (3,3) -> (3,4). This move has a cost of |3 - 3| + |4 - 3| = 1.
- (3,4) -> (4,5). This move uses the second special edge, the cost is 1.
So the total cost is 1 + 2 + 1 + 1 = 5.
It can be shown that we cannot achieve a smaller total cost than 5.


Example 2:

Input: start = [3,2], target = [5,7], specialRoads = [[3,2,3,4,4],[3,3,5,5,5],[3,4,5,6,6]]
Output: 7
Explanation: It is optimal to not use any special edges and go directly from the starting to the ending position with a cost |5 - 3| + |7 - 2| = 7.


Constraints:

• start.length == target.length == 2
• 1 <= startX <= targetX <= 105
• 1 <= startY <= targetY <= 105
• 1 <= specialRoads.length <= 200
• specialRoads[i].length == 5
• startX <= x1i, x2i <= targetX
• startY <= y1i, y2i <= targetY
• 1 <= costi <= 105

## Solution: Dijkstra

1. Create a node for each point in special edges as well as start and target.
3. Add edges for each pair of node with default cost, i.e. |x1-x2| + |y1-y2|
4. Run Dijkstra’s algorithm

Time complexity: O(n2logn)
Space complexity: O(n2)

## C++

You are given a 0-indexed 2D matrix grid of size m x n, where (r, c) represents:

• land cell if grid[r][c] = 0, or
• water cell containing grid[r][c] fish, if grid[r][c] > 0.

A fisher can start at any water cell (r, c) and can do the following operations any number of times:

• Catch all the fish at cell (r, c), or
• Move to any adjacent water cell.

Return the maximum number of fish the fisher can catch if he chooses his starting cell optimally, or 0 if no water cell exists.

An adjacent cell of the cell (r, c), is one of the cells (r, c + 1)(r, c - 1)(r + 1, c) or (r - 1, c) if it exists.

Example 1:

Input: grid = [[0,2,1,0],[4,0,0,3],[1,0,0,4],[0,3,2,0]]
Output: 7
Explanation: The fisher can start at cell (1,3) and collect 3 fish, then move to cell (2,3) and collect 4 fish.


Example 2:

Input: grid = [[1,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,1]]
Output: 1
Explanation: The fisher can start at cells (0,0) or (3,3) and collect a single fish.


Constraints:

• m == grid.length
• n == grid[i].length
• 1 <= m, n <= 10
• 0 <= grid[i][j] <= 10

## Solution: Connected Component

Similar to 花花酱 LeetCode 695. Max Area of Island

Find the connected component that has the max sum.

Time complexity: O(mn)
Space complexity: O(mn)

## C++

There is a directed weighted graph that consists of n nodes numbered from 0 to n - 1. The edges of the graph are initially represented by the given array edges where edges[i] = [fromi, toi, edgeCosti] meaning that there is an edge from fromi to toi with the cost edgeCosti.

Implement the Graph class:

• Graph(int n, int[][] edges) initializes the object with n nodes and the given edges.
• addEdge(int[] edge) adds an edge to the list of edges where edge = [from, to, edgeCost]. It is guaranteed that there is no edge between the two nodes before adding this one.
• int shortestPath(int node1, int node2) returns the minimum cost of a path from node1 to node2. If no path exists, return -1. The cost of a path is the sum of the costs of the edges in the path.

Example 1:

Input
[[4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]], [3, 2], [0, 3], [[1, 3, 4]], [0, 3]]
Output
[null, 6, -1, null, 6]


Explanation

Graph g = new Graph(4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]); g.shortestPath(3, 2); // return 6. The shortest path from 3 to 2 in the first diagram above is 3 -> 0 -> 1 -> 2 with a total cost of 3 + 2 + 1 = 6.
g.shortestPath(0, 3); // return -1. There is no path from 0 to 3.
g.addEdge([1, 3, 4]); // We add an edge from node 1 to node 3, and we get the second diagram above.
g.shortestPath(0, 3); // return 6. The shortest path from 0 to 3 now is 0 -> 1 -> 3 with a total cost of 2 + 4 = 6.

Constraints:

• 1 <= n <= 100
• 0 <= edges.length <= n * (n - 1)
• edges[i].length == edge.length == 3
• 0 <= fromi, toi, from, to, node1, node2 <= n - 1
• 1 <= edgeCosti, edgeCost <= 106
• There are no repeated edges and no self-loops in the graph at any point.
• At most 100 calls will be made for addEdge.
• At most 100 calls will be made for shortestPath.

## Solution 1: Floyd-Washall

Time complexity:
Init O(n3)
shortestPath O(1)

Space complexity: O(1)

## Solution 2: Dijkstra

Time complexity:
Init: O(|E|) ~ O(n2)
ShortestPath: O(|V|*log(|E|)) ~ O(n*logn)

Space complexity: O(E|) ~ O(n2)

## C++

You are given two strings of the same length s1 and s2 and a string baseStr.

We say s1[i] and s2[i] are equivalent characters.

• For example, if s1 = "abc" and s2 = "cde", then we have 'a' == 'c''b' == 'd', and 'c' == 'e'.

Equivalent characters follow the usual rules of any equivalence relation:

• Reflexivity: 'a' == 'a'.
• Symmetry: 'a' == 'b' implies 'b' == 'a'.
• Transitivity: 'a' == 'b' and 'b' == 'c' implies 'a' == 'c'.

For example, given the equivalency information from s1 = "abc" and s2 = "cde""acd" and "aab" are equivalent strings of baseStr = "eed", and "aab" is the lexicographically smallest equivalent string of baseStr.

Return the lexicographically smallest equivalent string of baseStr by using the equivalency information from s1 and s2.

Example 1:

Input: s1 = "parker", s2 = "morris", baseStr = "parser"
Output: "makkek"
Explanation: Based on the equivalency information in s1 and s2, we can group their characters as [m,p], [a,o], [k,r,s], [e,i].
The characters in each group are equivalent and sorted in lexicographical order.


Example 2:

Input: s1 = "hello", s2 = "world", baseStr = "hold"
Output: "hdld"
Explanation: Based on the equivalency information in s1 and s2, we can group their characters as [h,w], [d,e,o], [l,r].
So only the second letter 'o' in baseStr is changed to 'd', the answer is "hdld".


Example 3:

Constraints:

• 1 <= s1.length, s2.length, baseStr <= 1000
• s1.length == s2.length
• s1s2, and baseStr consist of lowercase English letters.

## Solution: Union Find

Time complexity: O(n + m)
Space complexity: O(1)