Press "Enter" to skip to content

Posts published in “Simulation”

花花酱 LeetCode 1854. Maximum Population Year

You are given a 2D integer array logs where each logs[i] = [birthi, deathi] indicates the birth and death years of the ith person.

The population of some year x is the number of people alive during that year. The ith person is counted in year x‘s population if x is in the inclusive range [birthi, deathi - 1]. Note that the person is not counted in the year that they die.

Return the earliest year with the maximum population.

Example 1:

Input: logs = [[1993,1999],[2000,2010]]
Output: 1993
Explanation: The maximum population is 1, and 1993 is the earliest year with this population.

Example 2:

Input: logs = [[1950,1961],[1960,1971],[1970,1981]]
Output: 1960
Explanation: 
The maximum population is 2, and it had happened in years 1960 and 1970.
The earlier year between them is 1960.

Constraints:

  • 1 <= logs.length <= 100
  • 1950 <= birthi < deathi <= 2050

Solution: Simulation

Time complexity: O(n*y)
Space complexity: O(y)

C++

花花酱 LeetCode 1834. Single-Threaded CPU

You are given n​​​​​​ tasks labeled from 0 to n - 1 represented by a 2D integer array tasks, where tasks[i] = [enqueueTimei, processingTimei] means that the i​​​​​​th​​​​ task will be available to process at enqueueTimei and will take processingTimeito finish processing.

You have a single-threaded CPU that can process at most one task at a time and will act in the following way:

  • If the CPU is idle and there are no available tasks to process, the CPU remains idle.
  • If the CPU is idle and there are available tasks, the CPU will choose the one with the shortest processing time. If multiple tasks have the same shortest processing time, it will choose the task with the smallest index.
  • Once a task is started, the CPU will process the entire task without stopping.
  • The CPU can finish a task then start a new one instantly.

Return the order in which the CPU will process the tasks.

Example 1:

Input: tasks = [[1,2],[2,4],[3,2],[4,1]]
Output: [0,2,3,1]
Explanation: The events go as follows: 
- At time = 1, task 0 is available to process. Available tasks = {0}.
- Also at time = 1, the idle CPU starts processing task 0. Available tasks = {}.
- At time = 2, task 1 is available to process. Available tasks = {1}.
- At time = 3, task 2 is available to process. Available tasks = {1, 2}.
- Also at time = 3, the CPU finishes task 0 and starts processing task 2 as it is the shortest. Available tasks = {1}.
- At time = 4, task 3 is available to process. Available tasks = {1, 3}.
- At time = 5, the CPU finishes task 2 and starts processing task 3 as it is the shortest. Available tasks = {1}.
- At time = 6, the CPU finishes task 3 and starts processing task 1. Available tasks = {}.
- At time = 10, the CPU finishes task 1 and becomes idle.

Example 2:

Input: tasks = [[7,10],[7,12],[7,5],[7,4],[7,2]]
Output: [4,3,2,0,1]
Explanation: The events go as follows:
- At time = 7, all the tasks become available. Available tasks = {0,1,2,3,4}.
- Also at time = 7, the idle CPU starts processing task 4. Available tasks = {0,1,2,3}.
- At time = 9, the CPU finishes task 4 and starts processing task 3. Available tasks = {0,1,2}.
- At time = 13, the CPU finishes task 3 and starts processing task 2. Available tasks = {0,1}.
- At time = 18, the CPU finishes task 2 and starts processing task 0. Available tasks = {1}.
- At time = 28, the CPU finishes task 0 and starts processing task 1. Available tasks = {}.
- At time = 40, the CPU finishes task 1 and becomes idle.

Constraints:

  • tasks.length == n
  • 1 <= n <= 105
  • 1 <= enqueueTimei, processingTimei <= 109

Solution: Simulation w/ Sort + PQ

Time complexity: O(nlogn)
Space complexity: O(n)

C++

花花酱 LeetCode 1823. Find the Winner of the Circular Game

There are n friends that are playing a game. The friends are sitting in a circle and are numbered from 1 to n in clockwise order. More formally, moving clockwise from the ith friend brings you to the (i+1)th friend for 1 <= i < n, and moving clockwise from the nth friend brings you to the 1st friend.

The rules of the game are as follows:

  1. Start at the 1st friend.
  2. Count the next k friends in the clockwise direction including the friend you started at. The counting wraps around the circle and may count some friends more than once.
  3. The last friend you counted leaves the circle and loses the game.
  4. If there is still more than one friend in the circle, go back to step 2 starting from the friend immediately clockwise of the friend who just lost and repeat.
  5. Else, the last friend in the circle wins the game.

Given the number of friends, n, and an integer k, return the winner of the game.

Example 1:

Input: n = 5, k = 2
Output: 3
Explanation: Here are the steps of the game:
1) Start at friend 1.
2) Count 2 friends clockwise, which are friends 1 and 2.
3) Friend 2 leaves the circle. Next start is friend 3.
4) Count 2 friends clockwise, which are friends 3 and 4.
5) Friend 4 leaves the circle. Next start is friend 5.
6) Count 2 friends clockwise, which are friends 5 and 1.
7) Friend 1 leaves the circle. Next start is friend 3.
8) Count 2 friends clockwise, which are friends 3 and 5.
9) Friend 5 leaves the circle. Only friend 3 is left, so they are the winner.

Example 2:

Input: n = 6, k = 5
Output: 1
Explanation: The friends leave in this order: 5, 4, 6, 2, 3. The winner is friend 1.

Constraints:

  • 1 <= k <= n <= 500

Solution 1: Simulation w/ Queue / List

Time complexity: O(n*k)
Space complexity: O(n)

C++/Queue

C++/List

花花酱 LeetCode 1806. Minimum Number of Operations to Reinitialize a Permutation

You are given an even integer n​​​​​​. You initially have a permutation perm of size n​​ where perm[i] == i​ (0-indexed)​​​​.

In one operation, you will create a new array arr, and for each i:

  • If i % 2 == 0, then arr[i] = perm[i / 2].
  • If i % 2 == 1, then arr[i] = perm[n / 2 + (i - 1) / 2].

You will then assign arr​​​​ to perm.

Return the minimum non-zero number of operations you need to perform on perm to return the permutation to its initial value.

Example 1:

Input: n = 2
Output: 1
Explanation: prem = [0,1] initially.
After the 1st operation, prem = [0,1]
So it takes only 1 operation.

Example 2:

Input: n = 4
Output: 2
Explanation: prem = [0,1,2,3] initially.
After the 1st operation, prem = [0,2,1,3]
After the 2nd operation, prem = [0,1,2,3]
So it takes only 2 operations.

Example 3:

Input: n = 6
Output: 4

Constraints:

  • 2 <= n <= 1000
  • n​​​​​​ is even.

Solution: Brute Force / Simulation

Time complexity: O(n2) ?
Space complexity: O(n)

C++

花花酱 LeetCode 1716. Calculate Money in Leetcode Bank

Hercy wants to save money for his first car. He puts money in the Leetcode bank every day.

He starts by putting in $1 on Monday, the first day. Every day from Tuesday to Sunday, he will put in $1 more than the day before. On every subsequent Monday, he will put in $1 more than the previous Monday.

Given n, return the total amount of money he will have in the Leetcode bank at the end of the nth day.

Example 1:

Input: n = 4
Output: 10
Explanation: After the 4th day, the total is 1 + 2 + 3 + 4 = 10.

Example 2:

Input: n = 10
Output: 37
Explanation: After the 10th day, the total is (1 + 2 + 3 + 4 + 5 + 6 + 7) + (2 + 3 + 4) = 37. Notice that on the 2nd Monday, Hercy only puts in $2.

Example 3:

Input: n = 20
Output: 96
Explanation: After the 20th day, the total is (1 + 2 + 3 + 4 + 5 + 6 + 7) + (2 + 3 + 4 + 5 + 6 + 7 + 8) + (3 + 4 + 5 + 6 + 7 + 8) = 96.

Constraints:

  • 1 <= n <= 1000

Solution 1: Simulation

Increase the amount by 1 everyday, the decrease 6 after every sunday.

Time complexity: O(n)
Space complexity: O(1)

C++

Could also be solved using Math in O(1)