Press "Enter" to skip to content

Posts tagged as “prefix sum”

花花酱 LeetCode 1895. Largest Magic Square

k x k magic square is a k x k grid filled with integers such that every row sum, every column sum, and both diagonal sums are all equal. The integers in the magic square do not have to be distinct. Every 1 x 1 grid is trivially a magic square.

Given an m x n integer grid, return the size (i.e., the side length k) of the largest magic square that can be found within this grid.

Example 1:

Input: grid = [[7,1,4,5,6],[2,5,1,6,4],[1,5,4,3,2],[1,2,7,3,4]]
Output: 3
Explanation: The largest magic square has a size of 3.
Every row sum, column sum, and diagonal sum of this magic square is equal to 12.
- Row sums: 5+1+6 = 5+4+3 = 2+7+3 = 12
- Column sums: 5+5+2 = 1+4+7 = 6+3+3 = 12
- Diagonal sums: 5+4+3 = 6+4+2 = 12

Example 2:

Input: grid = [[5,1,3,1],[9,3,3,1],[1,3,3,8]]
Output: 2

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 50
  • 1 <= grid[i][j] <= 106

Solution: Brute Force w/ Prefix Sum

Compute the prefix sum for each row and each column.

And check all possible squares.

Time complexity: O(m*n*min(m,n)2)
Space complexity: O(m*n)

C++

花花酱 LeetCode 1800. Maximum Ascending Subarray Sum

Given an array of positive integers nums, return the maximum possible sum of an ascending subarray in nums.

A subarray is defined as a contiguous sequence of numbers in an array.

A subarray [numsl, numsl+1, ..., numsr-1, numsr] is ascending if for all i where l <= i < rnums< numsi+1. Note that a subarray of size 1 is ascending.

Example 1:

Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.

Example 2:

Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.

Example 3:

Input: nums = [12,17,15,13,10,11,12]
Output: 33
Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.

Example 4:

Input: nums = [100,10,1]
Output: 100

Constraints:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 100

Solution: Running sum with resetting

Time complexity: O(n)
Space complexity: O(1)

Track the running sum and reset it to zero if nums[i] <= nums[i – 1]

C++

花花酱 LeetCode 1769. Minimum Number of Operations to Move All Balls to Each Box

You have n boxes. You are given a binary string boxes of length n, where boxes[i] is '0' if the ith box is empty, and '1' if it contains one ball.

In one operation, you can move one ball from a box to an adjacent box. Box i is adjacent to box j if abs(i - j) == 1. Note that after doing so, there may be more than one ball in some boxes.

Return an array answer of size n, where answer[i] is the minimum number of operations needed to move all the balls to the ith box.

Each answer[i] is calculated considering the initial state of the boxes.

Example 1:

Input: boxes = "110"
Output: [1,1,3]
Explanation: The answer for each box is as follows:
1) First box: you will have to move one ball from the second box to the first box in one operation.
2) Second box: you will have to move one ball from the first box to the second box in one operation.
3) Third box: you will have to move one ball from the first box to the third box in two operations, and move one ball from the second box to the third box in one operation.

Example 2:

Input: boxes = "001011"
Output: [11,8,5,4,3,4]

Constraints:

  • n == boxes.length
  • 1 <= n <= 2000
  • boxes[i] is either '0' or '1'

Solution: Prefix Sum + DP

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1749. Maximum Absolute Sum of Any Subarray

You are given an integer array nums. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr] is abs(numsl + numsl+1 + ... + numsr-1 + numsr).

Return the maximum absolute sum of any (possibly empty) subarray of nums.

Note that abs(x) is defined as follows:

  • If x is a negative integer, then abs(x) = -x.
  • If x is a non-negative integer, then abs(x) = x.

Example 1:

Input: nums = [1,-3,2,3,-4]
Output: 5
Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.

Example 2:

Input: nums = [2,-5,1,-4,3,-2]
Output: 8
Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.

Constraints:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

Solution: Prefix Sum

ans = max{abs(prefix_sum[i] – max(prefix_sum[0:i])), abs(prefix_sum – min(prefix_sum[0:i])}

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1703. Minimum Adjacent Swaps for K Consecutive Ones

You are given an integer array, nums, and an integer knums comprises of only 0‘s and 1‘s. In one move, you can choose two adjacent indices and swap their values.

Return the minimum number of moves required so that nums has k consecutive 1‘s.

Example 1:

Input: nums = [1,0,0,1,0,1], k = 2
Output: 1
Explanation: In 1 move, nums could be [1,0,0,0,1,1] and have 2 consecutive 1's.

Example 2:

Input: nums = [1,0,0,0,0,0,1,1], k = 3
Output: 5
Explanation: In 5 moves, the leftmost 1 can be shifted right until nums = [0,0,0,0,0,1,1,1].

Example 3:

Input: nums = [1,1,0,1], k = 2
Output: 0
Explanation: nums already has 2 consecutive 1's.

Constraints:

  • 1 <= nums.length <= 105
  • nums[i] is 0 or 1.
  • 1 <= k <= sum(nums)

Solution: Prefix Sum + Sliding Window

Time complexity: O(n)
Space complexity: O(n)

We only care positions of 1s, we can move one element from position x to y (assuming x + 1 ~ y are all zeros) in y – x steps. e.g. [0 0 1 0 0 0 1] => [0 0 0 0 0 1 1], move first 1 at position 2 to position 5, cost is 5 – 2 = 3.

Given a size k window of indices of ones, the optimal solution it to use the median number as center. We can compute the cost to form consecutive numbers:

e.g. [1 4 7 9 10] => [5 6 7 8 9] cost = (5 – 1) + (6 – 4) + (9 – 8) + (10 – 9) = 8

However, naive solution takes O(n*k) => TLE.

We can use prefix sum to compute the cost of a window in O(1) to reduce time complexity to O(n)

First, in order to use sliding window, we change the target of every number in the window to the median number.
e.g. [1 4 7 9 10] => [7 7 7 7 7] cost = (7 – 1) + (7 – 4) + (7 – 7) + (9 – 7) + (10 – 7) = (9 + 10) – (1 + 4) = right – left.
[5 6 7 8 9] => [7 7 7 7 7] takes extra 2 + 1 + 1 + 2 = 6 steps = (k / 2) * ((k + 1) / 2), these extra steps should be deducted from the final answer.

C++

Python3