Press "Enter" to skip to content

Posts tagged as “medium”

花花酱 LeetCode 1664. Ways to Make a Fair Array

You are given an integer array nums. You can choose exactly one index (0-indexed) and remove the element. Notice that the index of the elements may change after the removal.

For example, if nums = [6,1,7,4,1]:

  • Choosing to remove index 1 results in nums = [6,7,4,1].
  • Choosing to remove index 2 results in nums = [6,1,4,1].
  • Choosing to remove index 4 results in nums = [6,1,7,4].

An array is fair if the sum of the odd-indexed values equals the sum of the even-indexed values.

Return the number of indices that you could choose such that after the removal, numsis fair.

Example 1:

Input: nums = [2,1,6,4]
Output: 1
Explanation:
Remove index 0: [1,6,4] -> Even sum: 1 + 4 = 5. Odd sum: 6. Not fair.
Remove index 1: [2,6,4] -> Even sum: 2 + 4 = 6. Odd sum: 6. Fair.
Remove index 2: [2,1,4] -> Even sum: 2 + 4 = 6. Odd sum: 1. Not fair.
Remove index 3: [2,1,6] -> Even sum: 2 + 6 = 8. Odd sum: 1. Not fair.
There is 1 index that you can remove to make nums fair.

Example 2:

Input: nums = [1,1,1]
Output: 3
Explanation: You can remove any index and the remaining array is fair.

Example 3:

Input: nums = [1,2,3]
Output: 0
Explanation: You cannot make a fair array after removing any index.

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 104

Solution: Prefix Sum

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1658. Minimum Operations to Reduce X to Zero

You are given an integer array nums and an integer x. In one operation, you can either remove the leftmost or the rightmost element from the array nums and subtract its value from x. Note that this modifies the array for future operations.

Return the minimum number of operations to reduce x to exactly 0 if it’s possible, otherwise, return -1.

Example 1:

Input: nums = [1,1,4,2,3], x = 5
Output: 2
Explanation: The optimal solution is to remove the last two elements to reduce x to zero.

Example 2:

Input: nums = [5,6,7,8,9], x = 4
Output: -1

Example 3:

Input: nums = [3,2,20,1,1,3], x = 10
Output: 5
Explanation: The optimal solution is to remove the last three elements and the first two elements (5 operations in total) to reduce x to zero.

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 104
  • 1 <= x <= 109

Solution1: Prefix Sum + Hashtable

Time complexity: O(n)
Space complexity: O(n)

C++

Solution2: Sliding Window

Find the longest sliding window whose sum of elements equals sum(nums) – x
ans = n – window_size

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1657. Determine if Two Strings Are Close

Two strings are considered close if you can attain one from the other using the following operations:

  • Operation 1: Swap any two existing characters.
    • For example, abcde -> aecdb
  • Operation 2: Transform every occurrence of one existing character into another existing character, and do the same with the other character.
    • For example, aacabb -> bbcbaa (all a‘s turn into b‘s, and all b‘s turn into a‘s)

You can use the operations on either string as many times as necessary.

Given two strings, word1 and word2, return true if word1 and word2 are close, and false otherwise.

Example 1:

Input: word1 = "abc", word2 = "bca"
Output: true
Explanation: You can attain word2 from word1 in 2 operations.
Apply Operation 1: "abc" -> "acb"
Apply Operation 1: "acb" -> "bca"

Example 2:

Input: word1 = "a", word2 = "aa"
Output: false
Explanation: It is impossible to attain word2 from word1, or vice versa, in any number of operations.

Example 3:

Input: word1 = "cabbba", word2 = "abbccc"
Output: true
Explanation: You can attain word2 from word1 in 3 operations.
Apply Operation 1: "cabbba" -> "caabbb"
Apply Operation 2: "caabbb" -> "baaccc"
Apply Operation 2: "baaccc" -> "abbccc"

Example 4:

Input: word1 = "cabbba", word2 = "aabbss"
Output: false
Explanation: It is impossible to attain word2 from word1, or vice versa, in any amount of operations.

Constraints:

  • 1 <= word1.length, word2.length <= 105
  • word1 and word2 contain only lowercase English letters.

Solution: Hashtable

Two strings are close:
1. Have the same length, ccabbb => 6 == aabccc => 6
2. Have the same char set, ccabbb => (a, b, c) == aabccc => (a, b, c)
3. Have the same sorted char counts ccabbb => (1, 2, 3) == aabccc => (1, 2, 3)

Time complexity: O(n)
Space complexity: O(1)

C++

Python3

花花酱 LeetCode 1654. Minimum Jumps to Reach Home

A certain bug’s home is on the x-axis at position x. Help them get there from position 0.

The bug jumps according to the following rules:

  • It can jump exactly a positions forward (to the right).
  • It can jump exactly b positions backward (to the left).
  • It cannot jump backward twice in a row.
  • It cannot jump to any forbidden positions.

The bug may jump forward beyond its home, but it cannot jump to positions numbered with negative integers.

Given an array of integers forbidden, where forbidden[i] means that the bug cannot jump to the position forbidden[i], and integers ab, and x, return the minimum number of jumps needed for the bug to reach its home. If there is no possible sequence of jumps that lands the bug on position x, return -1.

Example 1:

Input: forbidden = [14,4,18,1,15], a = 3, b = 15, x = 9
Output: 3
Explanation: 3 jumps forward (0 -> 3 -> 6 -> 9) will get the bug home.

Example 2:

Input: forbidden = [8,3,16,6,12,20], a = 15, b = 13, x = 11
Output: -1

Example 3:

Input: forbidden = [1,6,2,14,5,17,4], a = 16, b = 9, x = 7
Output: 2
Explanation: One jump forward (0 -> 16) then one jump backward (16 -> 7) will get the bug home.

Constraints:

  • 1 <= forbidden.length <= 1000
  • 1 <= a, b, forbidden[i] <= 2000
  • 0 <= x <= 2000
  • All the elements in forbidden are distinct.
  • Position x is not forbidden.

Solution: BFS

Normal BFS with two tricks:
1. For each position, we need to track whether it’s reached via a forward jump or backward jump
2. How far should we go? If we don’t limit, it can go forever which leads to TLE/MLE. We can limit the distance to 2*max_jump, e.g. 4000, that’s maximum distance we can jump back to home in one shot.

Time complexity: O(max_distance * 2)
Space complexity: O(max_distance * 2)

C++

花花酱 LeetCode 1653. Minimum Deletions to Make String Balanced

You are given a string s consisting only of characters 'a' and 'b'​​​​.

You can delete any number of characters in s to make s balanceds is balanced if there is no pair of indices (i,j) such that i < j and s[i] = 'b' and s[j]= 'a'.

Return the minimum number of deletions needed to make s balanced.

Example 1:

Input: s = "aababbab"
Output: 2
Explanation: You can either:
Delete the characters at 0-indexed positions 2 and 6 ("aababbab" -> "aaabbb"), or
Delete the characters at 0-indexed positions 3 and 6 ("aababbab" -> "aabbbb").

Example 2:

Input: s = "bbaaaaabb"
Output: 2
Explanation: The only solution is to delete the first two characters.

Constraints:

  • 1 <= s.length <= 105
  • s[i] is 'a' or 'b'​​.

Solution: DP

dp[i][0] := min # of dels to make s[0:i] all ‘a’s;
dp[i][1] := min # of dels to make s[0:i] ends with 0 or mode ‘b’s

if s[i-1] == ‘a’:
dp[i + 1][0] = dp[i][0], dp[i + 1][1] = min(dp[i + 1][0], dp[i][1] + 1)
else:
dp[i + 1][0] = dp[i][0] + 1, dp[i + 1][1] = dp[i][1]

Time complexity: O(n)
Space complexity: O(n) -> O(1)

C++