Press "Enter" to skip to content

Posts tagged as “stack”

花花酱 LeetCode 1381. Design a Stack With Increment Operation

Design a stack which supports the following operations.

Implement the CustomStack class:

  • CustomStack(int maxSize) Initializes the object with maxSize which is the maximum number of elements in the stack or do nothing if the stack reached the maxSize.
  • void push(int x) Adds x to the top of the stack if the stack hasn’t reached the maxSize.
  • int pop() Pops and returns the top of stack or -1 if the stack is empty.
  • void inc(int k, int val) Increments the bottom k elements of the stack by val. If there are less than k elements in the stack, just increment all the elements in the stack.

Example 1:

Input
["CustomStack","push","push","pop","push","push","push","increment","increment","pop","pop","pop","pop"]
[[3],[1],[2],[],[2],[3],[4],[5,100],[2,100],[],[],[],[]]
Output
[null,null,null,2,null,null,null,null,null,103,202,201,-1]
Explanation
CustomStack customStack = new CustomStack(3); // Stack is Empty []
customStack.push(1);                          // stack becomes [1]
customStack.push(2);                          // stack becomes [1, 2]
customStack.pop();                            // return 2 --> Return top of the stack 2, stack becomes [1]
customStack.push(2);                          // stack becomes [1, 2]
customStack.push(3);                          // stack becomes [1, 2, 3]
customStack.push(4);                          // stack still [1, 2, 3], Don't add another elements as size is 4
customStack.increment(5, 100);                // stack becomes [101, 102, 103]
customStack.increment(2, 100);                // stack becomes [201, 202, 103]
customStack.pop();                            // return 103 --> Return top of the stack 103, stack becomes [201, 202]
customStack.pop();                            // return 202 --> Return top of the stack 102, stack becomes [201]
customStack.pop();                            // return 201 --> Return top of the stack 101, stack becomes []
customStack.pop();                            // return -1 --> Stack is empty return -1.

Solution: Simulation

Time complexity:
init: O(1)
pop: O(1)
push: O(1)
inc: O(k)

C++

花花酱 LeetCode 227. Basic Calculator II

Implement a basic calculator to evaluate a simple expression string.

The expression string contains only non-negative integers, +-*/ operators and empty spaces . The integer division should truncate toward zero.

Example 1:

Input: "3+2*2"
Output: 7

Example 2:

Input: " 3/2 "
Output: 1

Example 3:

Input: " 3+5 / 2 "
Output: 5

Note:

  • You may assume that the given expression is always valid.
  • Do not use the eval built-in library function.

Solution: Stack

if operator is ‘+’ or ‘-’, push the current num * sign onto stack.
if operator ‘*’ or ‘/’, pop the last num from stack and * or / by the current num and push it back to stack.

The answer is the sum of numbers on stack.

3+2*2 => {3}, {3,2}, {3, 2*2} = {3, 4} => ans = 7
3 +5/2 => {3}, {3,5}, {3, 5/2} = {3, 2} => ans = 5
1 + 2*3 – 5 => {1}, {1,2}, {1,2*3} = {1,6}, {1, 6, -5} => ans = 2

Time complexity: O(n)
Space complexity: O(n)

C++

python3

Related Problems

花花酱 LeetCode 84. Largest Rectangle in Histogram

Given n non-negative integers representing the histogram’s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.


Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].


The largest rectangle is shown in the shaded area, which has area = 10 unit.

Example:

Input: [2,1,5,6,2,3]
Output: 10

Solution 1: Monotonic Stack

Use a monotonic stack to maintain the higher bars’s indices in ascending order.
When encounter a lower bar, pop the tallest bar and use it as the bottleneck to compute the area.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 144. Binary Tree Preorder Traversal

Given a binary tree, return the preorder traversal of its nodes’ values.

Example:

Input: [1,null,2,3]
   1
    \
     2
    /
   3

Output: [1,2,3]

Follow up: Recursive solution is trivial, could you do it iteratively?

Solution 1: Recursion

Time complexity: O(n)
Space complexity: O(n)

C++

Solution 2: Stack

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1261. Find Elements in a Contaminated Binary Tree

Given a binary tree with the following rules:

  1. root.val == 0
  2. If treeNode.val == x and treeNode.left != null, then treeNode.left.val == 2 * x + 1
  3. If treeNode.val == x and treeNode.right != null, then treeNode.right.val == 2 * x + 2

Now the binary tree is contaminated, which means all treeNode.val have been changed to -1.

You need to first recover the binary tree and then implement the FindElements class:

  • FindElements(TreeNode* root) Initializes the object with a contamined binary tree, you need to recover it first.
  • bool find(int target) Return if the target value exists in the recovered binary tree.

Example 1:

Input
["FindElements","find","find"]
[[[-1,null,-1]],[1],[2]]
Output

[null,false,true]

Explanation FindElements findElements = new FindElements([-1,null,-1]); findElements.find(1); // return False findElements.find(2); // return True

Example 2:

Input
["FindElements","find","find","find"]
[[[-1,-1,-1,-1,-1]],[1],[3],[5]]
Output

[null,true,true,false]

Explanation FindElements findElements = new FindElements([-1,-1,-1,-1,-1]); findElements.find(1); // return True findElements.find(3); // return True findElements.find(5); // return False

Example 3:

Input
["FindElements","find","find","find","find"]
[[[-1,null,-1,-1,null,-1]],[2],[3],[4],[5]]
Output

[null,true,false,false,true]

Explanation FindElements findElements = new FindElements([-1,null,-1,-1,null,-1]); findElements.find(2); // return True findElements.find(3); // return False findElements.find(4); // return False findElements.find(5); // return True

Constraints:

  • TreeNode.val == -1
  • The height of the binary tree is less than or equal to 20
  • The total number of nodes is between [1, 10^4]
  • Total calls of find() is between [1, 10^4]
  • 0 <= target <= 10^6

Solutoin 1: Recursion and HashSet

Time complexity: Recover O(n), find O(1)
Space complexity: O(n)

C++

Solution 2: Recursion and Binary format

The binary format of t = (target + 1) (from high bit to low bit, e.g. in reverse order) decides where to go at each node.
t % 2 == 1, go right, otherwise go left
t = t / 2 or t >>= 1

Time complexity: Recover O(n), find O(log|target|)
Space complexity: O(1)

C++