Press "Enter" to skip to content

Posts tagged as “hard”

花花酱 LeetCode 1627. Graph Connectivity With Threshold

We have n cities labeled from 1 to n. Two different cities with labels x and y are directly connected by a bidirectional road if and only if x and y share a common divisor strictly greater than some threshold. More formally, cities with labels x and y have a road between them if there exists an integer z such that all of the following are true:

  • x % z == 0,
  • y % z == 0, and
  • z > threshold.

Given the two integers, n and threshold, and an array of queries, you must determine for each queries[i] = [ai, bi] if cities ai and bi are connected (i.e. there is some path between them).

Return an array answer, where answer.length == queries.length and answer[i] is true if for the ith query, there is a path between ai and bi, or answer[i] is false if there is no path.

Example 1:

Input: n = 6, threshold = 2, queries = [[1,4],[2,5],[3,6]]
Output: [false,false,true]
Explanation: The divisors for each number:
1:   1
2:   1, 2
3:   1, 3
4:   1, 2, 4
5:   1, 5
6:   1, 2, 3, 6
Using the underlined divisors above the threshold, only cities 3 and 6 share a common divisor, so they are the
only ones directly connected. The result of each query:
[1,4]   1 is not connected to 4
[2,5]   2 is not connected to 5
[3,6]   3 is connected to 6 through path 3--6

Example 2:

Input: n = 6, threshold = 0, queries = [[4,5],[3,4],[3,2],[2,6],[1,3]]
Output: [true,true,true,true,true]
Explanation: The divisors for each number are the same as the previous example. However, since the threshold is 0,
all divisors can be used. Since all numbers share 1 as a divisor, all cities are connected.

Example 3:

Input: n = 5, threshold = 1, queries = [[4,5],[4,5],[3,2],[2,3],[3,4]]
Output: [false,false,false,false,false]
Explanation: Only cities 2 and 4 share a common divisor 2 which is strictly greater than the threshold 1, so they are the only ones directly connected.
Please notice that there can be multiple queries for the same pair of nodes [x, y], and that the query [x, y] is equivalent to the query [y, x].

Constraints:

  • 2 <= n <= 104
  • 0 <= threshold <= n
  • 1 <= queries.length <= 105
  • queries[i].length == 2
  • 1 <= ai, bi <= cities
  • ai != bi

Solution: Union Find

For x, merge 2x, 3x, 4x, ..,
If a number is already “merged”, skip it.

Time complexity: O(nlogn? + queries)?
Space complexity: O(n)

C++

Python3

花花酱 LeetCode 1617. Count Subtrees With Max Distance Between Cities

There are n cities numbered from 1 to n. You are given an array edges of size n-1, where edges[i] = [ui, vi] represents a bidirectional edge between cities ui and vi. There exists a unique path between each pair of cities. In other words, the cities form a tree.

subtree is a subset of cities where every city is reachable from every other city in the subset, where the path between each pair passes through only the cities from the subset. Two subtrees are different if there is a city in one subtree that is not present in the other.

For each d from 1 to n-1, find the number of subtrees in which the maximum distance between any two cities in the subtree is equal to d.

Return an array of size n-1 where the dthelement (1-indexed) is the number of subtrees in which the maximum distance between any two cities is equal to d.

Notice that the distance between the two cities is the number of edges in the path between them.

Example 1:

Input: n = 4, edges = [[1,2],[2,3],[2,4]]
Output: [3,4,0]
Explanation:
The subtrees with subsets {1,2}, {2,3} and {2,4} have a max distance of 1.
The subtrees with subsets {1,2,3}, {1,2,4}, {2,3,4} and {1,2,3,4} have a max distance of 2.
No subtree has two nodes where the max distance between them is 3.

Example 2:

Input: n = 2, edges = [[1,2]]
Output: [1]

Example 3:

Input: n = 3, edges = [[1,2],[2,3]]
Output: [2,1]

Constraints:

  • 2 <= n <= 15
  • edges.length == n-1
  • edges[i].length == 2
  • 1 <= ui, vi <= n
  • All pairs (ui, vi) are distinct.

Solution1: Brute Force + Diameter of tree

Try all subtrees and find the diameter of that subtree (longest distance between any node)

Time complexity: O(2^n * n)
Space complexity: O(n)

C++

Solution 2: DP on Trees

dp[i][k][d] := # of subtrees rooted at i with tree diameter of d and the distance from i to the farthest node is k.

Time complexity: O(n^5)
Space complexity: O(n^3)

C++

花花酱 LeetCode 1611. Minimum One Bit Operations to Make Integers Zero

Given an integer n, you must transform it into 0 using the following operations any number of times:

  • Change the rightmost (0th) bit in the binary representation of n.
  • Change the ith bit in the binary representation of n if the (i-1)th bit is set to 1 and the (i-2)th through 0th bits are set to 0.

Return the minimum number of operations to transform n into 0.

Example 1:

Input: n = 0
Output: 0

Example 2:

Input: n = 3
Output: 2
Explanation: The binary representation of 3 is "11".
"11" -> "01" with the 2nd operation since the 0th bit is 1.
"01" -> "00" with the 1st operation.

Example 3:

Input: n = 6
Output: 4
Explanation: The binary representation of 6 is "110".
"110" -> "010" with the 2nd operation since the 1st bit is 1 and 0th through 0th bits are 0.
"010" -> "011" with the 1st operation.
"011" -> "001" with the 2nd operation since the 0th bit is 1.
"001" -> "000" with the 1st operation.

Example 4:

Input: n = 9
Output: 14

Example 5:

Input: n = 333
Output: 393

Constraints:

  • 0 <= n <= 109

Solution 1: Graycode

Time complexity: O(logn)
Space complexity: O(1)

Ans is the order of n in graycode.

C++

花花酱 LeetCode 1610. Maximum Number of Visible Points

You are given an array points, an integer angle, and your location, where location = [posx, posy] and points[i] = [xi, yi] both denote integral coordinates on the X-Y plane.

Initially, you are facing directly east from your position. You cannot move from your position, but you can rotate. In other words, posx and posy cannot be changed. Your field of view in degrees is represented by angle, determining how wide you can see from any given view direction. Let d be the amount in degrees that you rotate counterclockwise. Then, your field of view is the inclusive range of angles [d - angle/2, d + angle/2].

You can see some set of points if, for each point, the angle formed by the point, your position, and the immediate east direction from your position is in your field of view.

There can be multiple points at one coordinate. There may be points at your location, and you can always see these points regardless of your rotation. Points do not obstruct your vision to other points.

Return the maximum number of points you can see.

Example 1:

Input: points = [[2,1],[2,2],[3,3]], angle = 90, location = [1,1]
Output: 3
Explanation: The shaded region represents your field of view. All points can be made visible in your field of view, including [3,3] even though [2,2] is in front and in the same line of sight.

Example 2:

Input: points = [[2,1],[2,2],[3,4],[1,1]], angle = 90, location = [1,1]
Output: 4
Explanation: All points can be made visible in your field of view, including the one at your location.

Example 3:

Input: points = [[1,0],[2,1]], angle = 13, location = [1,1]
Output: 1
Explanation: You can only see one of the two points, as shown above.

Constraints:

  • 1 <= points.length <= 105
  • points[i].length == 2
  • location.length == 2
  • 0 <= angle < 360
  • 0 <= posx, posy, xi, yi <= 109

Solution: Sliding window

Sort all the points by angle, duplicate the points with angle + 2*PI to deal with turn around case.

maintain a window [l, r] such that angle[r] – angle[l] <= fov

Time complexity: O(nlogn)
Space complexity: O(n)

C++

花花酱 LeetCode 1601. Maximum Number of Achievable Transfer Requests

We have n buildings numbered from 0 to n - 1. Each building has a number of employees. It’s transfer season, and some employees want to change the building they reside in.

You are given an array requests where requests[i] = [fromi, toi] represents an employee’s request to transfer from building fromi to building toi.

All buildings are full, so a list of requests is achievable only if for each building, the net change in employee transfers is zero. This means the number of employees leaving is equal to the number of employees moving in. For example if n = 3 and two employees are leaving building 0, one is leaving building 1, and one is leaving building 2, there should be two employees moving to building 0, one employee moving to building 1, and one employee moving to building 2.

Return the maximum number of achievable requests.

Example 1:

Input: n = 5, requests = [[0,1],[1,0],[0,1],[1,2],[2,0],[3,4]]
Output: 5
Explantion: Let's see the requests:
From building 0 we have employees x and y and both want to move to building 1.
From building 1 we have employees a and b and they want to move to buildings 2 and 0 respectively.
From building 2 we have employee z and they want to move to building 0.
From building 3 we have employee c and they want to move to building 4.
From building 4 we don't have any requests.
We can achieve the requests of users x and b by swapping their places.
We can achieve the requests of users y, a and z by swapping the places in the 3 buildings.

Example 2:

Input: n = 3, requests = [[0,0],[1,2],[2,1]]
Output: 3
Explantion: Let's see the requests:
From building 0 we have employee x and they want to stay in the same building 0.
From building 1 we have employee y and they want to move to building 2.
From building 2 we have employee z and they want to move to building 1.
We can achieve all the requests. 

Example 3:

Input: n = 4, requests = [[0,3],[3,1],[1,2],[2,0]]
Output: 4

Constraints:

  • 1 <= n <= 20
  • 1 <= requests.length <= 16
  • requests[i].length == 2
  • 0 <= fromi, toi < n

Solution: Combination

Try all combinations: O(2^n * (r + n))
Space complexity: O(n)

C++

Python3