Press "Enter" to skip to content

Posts tagged as “BFS”

花花酱 LeetCode 1210. Minimum Moves to Reach Target with Rotations

In an n*n grid, there is a snake that spans 2 cells and starts moving from the top left corner at (0, 0) and (0, 1). The grid has empty cells represented by zeros and blocked cells represented by ones. The snake wants to reach the lower right corner at (n-1, n-2) and (n-1, n-1).

In one move the snake can:

  • Move one cell to the right if there are no blocked cells there. This move keeps the horizontal/vertical position of the snake as it is.
  • Move down one cell if there are no blocked cells there. This move keeps the horizontal/vertical position of the snake as it is.
  • Rotate clockwise if it’s in a horizontal position and the two cells under it are both empty. In that case the snake moves from (r, c) and (r, c+1) to (r, c) and (r+1, c).
  • Rotate counterclockwise if it’s in a vertical position and the two cells to its right are both empty. In that case the snake moves from (r, c) and (r+1, c) to (r, c) and (r, c+1).

Return the minimum number of moves to reach the target.

If there is no way to reach the target, return -1.

Example 1:

Input: grid = [[0,0,0,0,0,1],
               [1,1,0,0,1,0],
               [0,0,0,0,1,1],
               [0,0,1,0,1,0],
               [0,1,1,0,0,0],
               [0,1,1,0,0,0]]
Output: 11
Explanation:
One possible solution is [right, right, rotate clockwise, right, down, down, down, down, rotate counterclockwise, right, down].

Example 2:

Input: grid = [[0,0,1,1,1,1],
               [0,0,0,0,1,1],
               [1,1,0,0,0,1],
               [1,1,1,0,0,1],
               [1,1,1,0,0,1],
               [1,1,1,0,0,0]]
Output: 9

Constraints:

  • 2 <= n <= 100
  • 0 <= grid[i][j] <= 1
  • It is guaranteed that the snake starts at empty cells.

Solution1: BFS

Time complexity: O(n^2)
Space complexity: O(n^2)

C++

Solution 2: DP

dp[i][j].first = min steps to reach i,j (tail pos) facing right
dp[i][j].second = min steps to reach i, j (tail pos) facing down
ans = dp[n][n-1].first

Time complexity: O(n^2)
Space complexity: O(n^2)

C++

花花酱 LeetCode 1162. As Far from Land as Possible

Given an N x N grid containing only values 0 and 1, where 0 represents water and 1 represents land, find a water cell such that its distance to the nearest land cell is maximized and return the distance.

The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0) and (x1, y1)is |x0 - x1| + |y0 - y1|.

If no land or water exists in the grid, return -1.

Example 1:

Input: [[1,0,1],[0,0,0],[1,0,1]]
Output: 2
Explanation: 
The cell (1, 1) is as far as possible from all the land with distance 2.

Example 2:

Input: [[1,0,0],[0,0,0],[0,0,0]]
Output: 4
Explanation: 
The cell (2, 2) is as far as possible from all the land with distance 4.

Note:

  1. 1 <= grid.length == grid[0].length <= 100
  2. grid[i][j] is 0 or 1

Solution: BFS

Put all land cells into a queue as source nodes and BFS for water cells, the last expanded one will be the farthest.

Time compleixty: O(n^2)
Space complexity: O(n^2)

C++

花花酱 LeetCode 1129. Shortest Path with Alternating Colors

Consider a directed graph, with nodes labelled 0, 1, ..., n-1.  In this graph, each edge is either red or blue, and there could be self-edges or parallel edges.

Each [i, j] in red_edges denotes a red directed edge from node i to node j.  Similarly, each [i, j] in blue_edges denotes a blue directed edge from node i to node j.

Return an array answer of length n, where each answer[X] is the length of the shortest path from node 0 to node X such that the edge colors alternate along the path (or -1 if such a path doesn’t exist).

Example 1:

Input: n = 3, red_edges = [[0,1],[1,2]], blue_edges = []
Output: [0,1,-1]

Example 2:

Input: n = 3, red_edges = [[0,1]], blue_edges = [[2,1]]
Output: [0,1,-1]

Example 3:

Input: n = 3, red_edges = [[1,0]], blue_edges = [[2,1]]
Output: [0,-1,-1]

Example 4:

Input: n = 3, red_edges = [[0,1]], blue_edges = [[1,2]]
Output: [0,1,2]

Example 5:

Input: n = 3, red_edges = [[0,1],[0,2]], blue_edges = [[1,0]]
Output: [0,1,1]

Constraints:

  • 1 <= n <= 100
  • red_edges.length <= 400
  • blue_edges.length <= 400
  • red_edges[i].length == blue_edges[i].length == 2
  • 0 <= red_edges[i][j], blue_edges[i][j] < n

Solution: BFS

Time complexity: O(|V| + |E|)
Space complexity: O(|V| + |E|)

C++

花花酱 LeetCode 838. Push Dominoes

here are N dominoes in a line, and we place each domino vertically upright.

In the beginning, we simultaneously push some of the dominoes either to the left or to the right.

After each second, each domino that is falling to the left pushes the adjacent domino on the left.

Similarly, the dominoes falling to the right push their adjacent dominoes standing on the right.

When a vertical domino has dominoes falling on it from both sides, it stays still due to the balance of the forces.

For the purposes of this question, we will consider that a falling domino expends no additional force to a falling or already fallen domino.

Given a string “S” representing the initial state. S[i] = 'L', if the i-th domino has been pushed to the left; S[i] = 'R', if the i-th domino has been pushed to the right; S[i] = '.', if the i-th domino has not been pushed.

Return a string representing the final state. 

Example 1:

Input: ".L.R...LR..L.."
Output: "LL.RR.LLRRLL.."

Example 2:

Input: "RR.L"
Output: "RR.L"
Explanation: The first domino expends no additional force on the second domino.

Note:

  1. 0 <= N <= 10^5
  2. String dominoes contains only 'L‘, 'R' and '.'

Solution: Simulation

Simulate the push process, record the steps from L and R for each domino.
steps(L) == steps(R) => “.”
steps(L) < steps(R) => “L”
steps(L) > steps(R) => “R”

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 8 Puzzles – Bidirectional A* vs Bidirectional BFS

8 Puzzles # nodes expended of 1000 solvable instances

Conclusion:

Nodes expended: BiDirectional A* << A* (Manhattan) <= Bidirectional BFS < A* Hamming << BFS
Running time: BiDirectional A* < Bidirectional BFS <= A* (Manhattan) < A* Hamming << BFS

Code:

C++ Version