Press "Enter" to skip to content

Posts tagged as “subarray”

花花酱 LeetCode 1546. Maximum Number of Non-Overlapping Subarrays With Sum Equals Target

Given an array nums and an integer target.

Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.

Example 1:

Input: nums = [1,1,1,1,1], target = 2
Output: 2
Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2).

Example 2:

Input: nums = [-1,3,5,1,4,2,-9], target = 6
Output: 2
Explanation: There are 3 subarrays with sum equal to 6.
([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping.

Example 3:

Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10
Output: 3

Example 4:

Input: nums = [0,0,0], target = 0
Output: 3

Constraints:

  • 1 <= nums.length <= 10^5
  • -10^4 <= nums[i] <= 10^4
  • 0 <= target <= 10^6

Solution: Prefix Sum + DP

Use a hashmap index to record the last index when a given prefix sum occurs.
dp[i] := max # of non-overlapping subarrays of nums[0~i], nums[i] is not required to be included.
dp[i+1] = max(dp[i], // skip nums[i]
dp[index[sum – target] + 1] + 1) // use nums[i] to form a new subarray
ans = dp[n]

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1513. Number of Substrings With Only 1s

Given a binary string s (a string consisting only of ‘0’ and ‘1’s).

Return the number of substrings with all characters 1’s.

Since the answer may be too large, return it modulo 10^9 + 7.

Example 1:

Input: s = "0110111"
Output: 9
Explanation: There are 9 substring in total with only 1's characters.
"1" -> 5 times.
"11" -> 3 times.
"111" -> 1 time.

Example 2:

Input: s = "101"
Output: 2
Explanation: Substring "1" is shown 2 times in s.

Example 3:

Input: s = "111111"
Output: 21
Explanation: Each substring contains only 1's characters.

Example 4:

Input: s = "000"
Output: 0

Constraints:

  • s[i] == '0' or s[i] == '1'
  • 1 <= s.length <= 10^5

Solution: DP / Prefix Sum

dp[i] := # of all 1 subarrays end with s[i].
dp[i] = dp[i-1] if s[i] == ‘1‘ else 0
ans = sum(dp)
s=1101
dp[0] = 1 // 1
dp[1] = 2 // 11, *1
dp[2] = 0 // None
dp[3] = 1 // ***1
ans = 1 + 2 + 1 = 5

Time complexity: O(n)
Space complexity: O(n)

C++

dp[i] only depends on dp[i-1], we can reduce the space complexity to O(1)

C++

Java

Python3


花花酱 LeetCode 1520. Maximum Number of Non-Overlapping Substrings

Given a string s of lowercase letters, you need to find the maximum number of non-empty substrings of s that meet the following conditions:

  1. The substrings do not overlap, that is for any two substrings s[i..j] and s[k..l], either j < k or i > l is true.
  2. A substring that contains a certain character c must also contain all occurrences of c.

Find the maximum number of substrings that meet the above conditions. If there are multiple solutions with the same number of substrings, return the one with minimum total length. It can be shown that there exists a unique solution of minimum total length.

Notice that you can return the substrings in any order.

Example 1:

Input: s = "adefaddaccc"
Output: ["e","f","ccc"]
Explanation: The following are all the possible substrings that meet the conditions:
[
  "adefaddaccc"
  "adefadda",
  "ef",
  "e",
  "f",
  "ccc",
]
If we choose the first string, we cannot choose anything else and we'd get only 1. If we choose "adefadda", we are left with "ccc" which is the only one that doesn't overlap, thus obtaining 2 substrings. Notice also, that it's not optimal to choose "ef" since it can be split into two. Therefore, the optimal way is to choose ["e","f","ccc"] which gives us 3 substrings. No other solution of the same number of substrings exist.

Example 2:

Input: s = "abbaccd"
Output: ["d","bb","cc"]
Explanation: Notice that while the set of substrings ["d","abba","cc"] also has length 3, it's considered incorrect since it has larger total length.

Constraints:

  • 1 <= s.length <= 10^5
  • s contains only lowercase English letters.

Solution: Greedy

Observation: If a valid substring contains shorter valid strings, ignore the longer one and use the shorter one.
e.g. “abbeefba” is a valid substring, however, it includes “bbeefb”, “ee”, “f” three valid substrings, thus it won’t be part of the optimal solution, since we can always choose a shorter one, with potential to have one or more non-overlapping substrings. For “bbeefb”, again it includes “ee” and “f”, so it won’t be optimal either. Thus, the optimal ones are “ee” and “f”.

  1. We just need to record the first and last occurrence of each character
  2. When we meet a character for the first time we must include everything from current pos to it’s last position. e.g. “abbeefba” | ccc, from first ‘a’ to last ‘a’, we need to cover “abbeefba”
  3. If any character in that range has larger end position, we must extend the string. e.g. “abcabbcc” | efg, from first ‘a’ to last ‘a’, we have characters ‘b’ and ‘c’, so we have to extend the string to cover all ‘b’s and ‘c’s. Our first valid substring extended from “abca” to “abcabbcc”.
  4. If any character in the covered range has a smallest first occurrence, then it’s an invalid substring. e.g. ab | “cbc”, from first ‘c’ to last ‘c’, we have ‘b’, but ‘b’ is not fully covered, thus “cbc” is an invalid substring.
  5. For the first valid substring, we append it to the ans array. “abbeefba” => ans = [“abbeefba”]
  6. If we find a shorter substring that is full covered by the previous valid substring, we replace that substring with the shorter one. e.g.
    “abbeefba” | ccc => ans = [“abbeefba”]
    abbeefba” | ccc => ans = [“bbeefb”]
    “abbeefba” | ccc => ans = [“ee”]
  7. If the current substring does not overlap with previous one, append it to ans array.
    “abbeefba” | ccc => ans = [“ee”]
    “abbeefba” | ccc => ans = [“ee”, “f”]
    “abbeefbaccc” => ans = [“ee”, “f”, “ccc”]

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1508. Range Sum of Sorted Subarray Sums

Given the array nums consisting of n positive integers. You computed the sum of all non-empty continous subarrays from the array and then sort them in non-decreasing order, creating a new array of n * (n + 1) / 2 numbers.

Return the sum of the numbers from index left to index right (indexed from 1), inclusive, in the new array. Since the answer can be a huge number return it modulo 10^9 + 7.

Example 1:

Input: nums = [1,2,3,4], n = 4, left = 1, right = 5
Output: 13 
Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13. 

Example 2:

Input: nums = [1,2,3,4], n = 4, left = 3, right = 4
Output: 6
Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.

Example 3:

Input: nums = [1,2,3,4], n = 4, left = 1, right = 10
Output: 50

Constraints:

  • 1 <= nums.length <= 10^3
  • nums.length == n
  • 1 <= nums[i] <= 100
  • 1 <= left <= right <= n * (n + 1) / 2

Solution 1: Brute Force

Find sums of all the subarrays and sort the values.

Time complexity: O(n^2logn)
Space complexity: O(n^2)

C++

Java

Python3

Solution 2: Priority Queue / Min Heap

For each subarray, start with one element e.g nums[i], put them into a priority queue (min heap). Each time, we have the smallest subarray sum, and extend that subarray and put the new sum back into priority queue. Thought it has the same time complexity as the brute force one in worst case, but space complexity can be reduce to O(n).

Time complexity: O(n^2logn)
Space complexity: O(n)

C++

Java

Python3

Solution 3: Binary Search + Sliding Window

Use binary search to find S s.t. that there are at least k subarrys have sum <= S.

Given S, we can use sliding window to count how many subarrays have sum <= S and their total sum.

ans = sums_of_first(right) – sums_of_first(left – 1).

Time complexity: O(n * log(sum(nums))
Space complexity: O(n)

C++

花花酱 LeetCode 1493. Longest Subarray of 1’s After Deleting One Element

Given a binary array nums, you should delete one element from it.

Return the size of the longest non-empty subarray containing only 1’s in the resulting array.

Return 0 if there is no such subarray.

Example 1:

Input: nums = [1,1,0,1]
Output: 3
Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's.

Example 2:

Input: nums = [0,1,1,1,0,1,1,0,1]
Output: 5
Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1].

Example 3:

Input: nums = [1,1,1]
Output: 2
Explanation: You must delete one element.

Example 4:

Input: nums = [1,1,0,0,1,1,1,0,1]
Output: 4

Example 5:

Input: nums = [0,0,0]
Output: 0

Constraints:

  • 1 <= nums.length <= 10^5
  • nums[i] is either 0 or 1.

Solution 1: DP

Preprocess:
l[i] := longest 1s from left side ends with nums[i], l[i] = nums[i] + nums[i] * l[i – 1]
r[i] := longest 1s from right side ends with nums[i], r[i] = nums[i] + nums[i] * r[i + 1]

Use each node as a bridge (ignored), the total number of consecutive 1s = l[i – 1] + r[i + 1].

ans = max{l[i-1] + r[i +1]}
Time complexity: O(n)
Space complexity: O(n)

C++

Solution 2: DP

dp[i][0] := longest subarray ends with nums[i] has no ones.
dp[i][0] := longest subarray ends with nums[i] has 1 one.
if nums[i] == 1:
dp[i][0] = dp[i – 1][0] + 1
dp[i][1] = dp[i – 1][1] + 1
if nums[i] == 0:
dp[i][0] = 0
dp[i][1] = dp[i – 1][0] + 1
Time complexity: O(n)
Space complexity: O(n) -> O(1)

C++

Solution 3: Sliding Window

Maintain a sliding window l ~ r s.t sum(num[l~r]) >= r – l. There can be at most one 0 in the window.
ans = max{r – l} for all valid windows.

Time complexity: O(n)
Space complexity: O(1)

C++