Press "Enter" to skip to content

Posts tagged as “bit”

花花酱 LeetCode 2220. Minimum Bit Flips to Convert Number

bit flip of a number x is choosing a bit in the binary representation of x and flipping it from either 0 to 1 or 1 to 0.

  • For example, for x = 7, the binary representation is 111 and we may choose any bit (including any leading zeros not shown) and flip it. We can flip the first bit from the right to get 110, flip the second bit from the right to get 101, flip the fifth bit from the right (a leading zero) to get 10111, etc.

Given two integers start and goal, return the minimum number of bit flips to convert start to goal.

Example 1:

Input: start = 10, goal = 7
Output: 3
Explanation: The binary representation of 10 and 7 are 1010 and 0111 respectively. We can convert 10 to 7 in 3 steps:
- Flip the first bit from the right: 1010 -> 1011.
- Flip the third bit from the right: 1011 -> 1111.
- Flip the fourth bit from the right: 1111 -> 0111.
It can be shown we cannot convert 10 to 7 in less than 3 steps. Hence, we return 3.

Example 2:

Input: start = 3, goal = 4
Output: 3
Explanation: The binary representation of 3 and 4 are 011 and 100 respectively. We can convert 3 to 4 in 3 steps:
- Flip the first bit from the right: 011 -> 010.
- Flip the second bit from the right: 010 -> 000.
- Flip the third bit from the right: 000 -> 100.
It can be shown we cannot convert 3 to 4 in less than 3 steps. Hence, we return 3.

Constraints:

  • 0 <= start, goal <= 109

Solution: XOR

start ^ goal will give us the bitwise difference of start and goal in binary format.
ans = # of 1 ones in the xor-ed results.
For C++, we can use __builtin_popcount or bitset<32>::count() to get the number of bits set for a given integer.

Time complexity: O(1)
Space complexity: O(1)

C++

花花酱 LeetCode 1920. Build Array from Permutation

Given a zero-based permutation nums (0-indexed), build an array ans of the same length where ans[i] = nums[nums[i]] for each 0 <= i < nums.length and return it.

zero-based permutation nums is an array of distinct integers from 0 to nums.length - 1 (inclusive).

Example 1:

Input: nums = [0,2,1,5,3,4]
Output: [0,1,2,4,5,3]
Explanation: The array ans is built as follows: 
ans = [nums[nums[0]], nums[nums[1]], nums[nums[2]], nums[nums[3]], nums[nums[4]], nums[nums[5]]]
    = [nums[0], nums[2], nums[1], nums[5], nums[3], nums[4]]
    = [0,1,2,4,5,3]

Example 2:

Input: nums = [5,0,1,2,3,4]
Output: [4,5,0,1,2,3]
Explanation: The array ans is built as follows:
ans = [nums[nums[0]], nums[nums[1]], nums[nums[2]], nums[nums[3]], nums[nums[4]], nums[nums[5]]]
    = [nums[5], nums[0], nums[1], nums[2], nums[3], nums[4]]
    = [4,5,0,1,2,3]

Constraints:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] < nums.length
  • The elements in nums are distinct.

Follow-up: Can you solve it without using an extra space (i.e., O(1) memory)?

Solution 1: Straight forward

Time complexity: O(n)
Space complexity: O(n)

C++

Solution 2: Follow up: Inplace Encoding

Since nums[i] <= 1000, we can use low 16 bit to store the original value and high 16 bit for new value.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 231. Power of Two

Given an integer n, return true if it is a power of two. Otherwise, return false.

An integer n is a power of two, if there exists an integer x such that n == 2x.

Example 1:

Input: n = 1
Output: true
Explanation: 20 = 1

Example 2:

Input: n = 16
Output: true
Explanation: 24 = 16

Example 3:

Input: n = 3
Output: false

Example 4:

Input: n = 4
Output: true

Example 5:

Input: n = 5
Output: false

Constraints:

  • -231 <= n <= 231 - 1

Solution: 1 bit set

Any power of two has only 1 bit set in the binary format. e.g. 1=0b01, 2=0b10, 4=0b100, 8=0b1000

  1. use popcount.

C++

2. Use (n) & (n – 1) to remove the last set bit, so it should be zero.

C++

花花酱 LeetCode 201. Bitwise AND of Numbers Range

Given two integers left and right that represent the range [left, right], return the bitwise AND of all numbers in this range, inclusive.

Example 1:

Input: left = 5, right = 7
Output: 4

Example 2:

Input: left = 0, right = 0
Output: 0

Example 3:

Input: left = 1, right = 2147483647
Output: 0

Constraints:

  • 0 <= left <= right <= 231 - 1

Solution: Bit operation

Bitwise AND all the numbers between left and right will clear out all the low bits. Basically this question is asking to find the common prefix of left and right in the binary format.


5 = 0b0101
7 = 0b0111
the common prefix is 0b0100 which is 4.

Time complexity: O(logn)
Space complexity: O(1)

C++

花花酱 LeetCode 191. Number of 1 Bits

Write a function that takes an unsigned integer and returns the number of ‘1’ bits it has (also known as the Hamming weight).

Note:

  • Note that in some languages, such as Java, there is no unsigned integer type. In this case, the input will be given as a signed integer type. It should not affect your implementation, as the integer’s internal binary representation is the same, whether it is signed or unsigned.
  • In Java, the compiler represents the signed integers using 2’s complement notation. Therefore, in Example 3, the input represents the signed integer. -3.

Example 1:

Input: n = 00000000000000000000000000001011
Output: 3
Explanation: The input binary string 00000000000000000000000000001011 has a total of three '1' bits.

Example 2:

Input: n = 00000000000000000000000010000000
Output: 1
Explanation: The input binary string 00000000000000000000000010000000 has a total of one '1' bit.

Example 3:

Input: n = 11111111111111111111111111111101
Output: 31
Explanation: The input binary string 11111111111111111111111111111101 has a total of thirty one '1' bits.

Constraints:

  • The input must be a binary string of length 32.

Follow up: If this function is called many times, how would you optimize it?

Solution: Bit Operation

Use n & 1 to get the lowest bit of n.
Use n >>= 1 to right shift n for 1 bit, e.g. removing the last bit.

Time complexity: O(logn)
Space complexity: O(1)

C++