# Posts published in “Tree”

You are given the root of a binary tree and a positive integer k.

The level sum in the tree is the sum of the values of the nodes that are on the same level.

Return the kth largest level sum in the tree (not necessarily distinct). If there are fewer than k levels in the tree, return -1.

Note that two nodes are on the same level if they have the same distance from the root.

Example 1:

Input: root = [5,8,9,2,1,3,7,4,6], k = 2
Output: 13
Explanation: The level sums are the following:
- Level 1: 5.
- Level 2: 8 + 9 = 17.
- Level 3: 2 + 1 + 3 + 7 = 13.
- Level 4: 4 + 6 = 10.
The 2nd largest level sum is 13.


Example 2:

Input: root = [1,2,null,3], k = 1
Output: 3
Explanation: The largest level sum is 3.


Constraints:

• The number of nodes in the tree is n.
• 2 <= n <= 105
• 1 <= Node.val <= 106
• 1 <= k <= n

## Solution: DFS + Sorting

Use DFS to traverse the tree and accumulate level sum. Once done, sort the level sums and find the k-th largest one.

Time complexity: O(n)
Space complexity: O(n)

Note: sum can be very large, use long long.

## C++

You are given an array words of size n consisting of non-empty strings.

We define the score of a string word as the number of strings words[i] such that word is a prefix of words[i].

• For example, if words = ["a", "ab", "abc", "cab"], then the score of "ab" is 2, since "ab" is a prefix of both "ab" and "abc".

Return an array answer of size n where answer[i] is the sum of scores of every non-empty prefix of words[i].

Note that a string is considered as a prefix of itself.

Example 1:

Input: words = ["abc","ab","bc","b"]
Output: [5,4,3,2]
Explanation: The answer for each string is the following:
- "abc" has 3 prefixes: "a", "ab", and "abc".
- There are 2 strings with the prefix "a", 2 strings with the prefix "ab", and 1 string with the prefix "abc".
The total is answer[0] = 2 + 2 + 1 = 5.
- "ab" has 2 prefixes: "a" and "ab".
- There are 2 strings with the prefix "a", and 2 strings with the prefix "ab".
The total is answer[1] = 2 + 2 = 4.
- "bc" has 2 prefixes: "b" and "bc".
- There are 2 strings with the prefix "b", and 1 string with the prefix "bc".
The total is answer[2] = 2 + 1 = 3.
- "b" has 1 prefix: "b".
- There are 2 strings with the prefix "b".
The total is answer[3] = 2.


Example 2:

Input: words = ["abcd"]
Output: [4]
Explanation:
"abcd" has 4 prefixes: "a", "ab", "abc", and "abcd".
Each prefix has a score of one, so the total is answer[0] = 1 + 1 + 1 + 1 = 4.


Constraints:

• 1 <= words.length <= 1000
• 1 <= words[i].length <= 1000
• words[i] consists of lowercase English letters.

## Solution: Trie

Insert all the words into a tire whose node val is the number of substrings that have the current prefix.

During query time, sum up the values along the prefix path.

Time complexity: O(sum(len(word))
Space complexity: O(sum(len(word))

## C++

Given the root of a binary tree, return the number of nodes where the value of the node is equal to the average of the values in its subtree.

Note:

• The average of n elements is the sum of the n elements divided by n and rounded down to the nearest integer.
• subtree of root is a tree consisting of root and all of its descendants.

Example 1:

Input: root = [4,8,5,0,1,null,6]
Output: 5
Explanation:
For the node with value 4: The average of its subtree is (4 + 8 + 5 + 0 + 1 + 6) / 6 = 24 / 6 = 4.
For the node with value 5: The average of its subtree is (5 + 6) / 2 = 11 / 2 = 5.
For the node with value 0: The average of its subtree is 0 / 1 = 0.
For the node with value 1: The average of its subtree is 1 / 1 = 1.
For the node with value 6: The average of its subtree is 6 / 1 = 6.


Example 2:

Input: root = [1]
Output: 1
Explanation: For the node with value 1: The average of its subtree is 1 / 1 = 1.


Constraints:

• The number of nodes in the tree is in the range [1, 1000].
• 0 <= Node.val <= 1000

## Solution: Recursion

Time complexity: O(n)
Space complexity: O(h)

## C++

You are given a 0-indexed 2D integer array flowers, where flowers[i] = [starti, endi] means the ith flower will be in full bloom from starti to endi (inclusive). You are also given a 0-indexed integer array persons of size n, where persons[i] is the time that the ith person will arrive to see the flowers.

Return an integer array answer of size n, where answer[i] is the number of flowers that are in full bloom when the ith person arrives.

Example 1:

Input: flowers = [[1,6],[3,7],[9,12],[4,13]], persons = [2,3,7,11]
Output: [1,2,2,2]
Explanation: The figure above shows the times when the flowers are in full bloom and when the people arrive.
For each person, we return the number of flowers in full bloom during their arrival.


Example 2:

Input: flowers = [[1,10],[3,3]], persons = [3,3,2]
Output: [2,2,1]
Explanation: The figure above shows the times when the flowers are in full bloom and when the people arrive.
For each person, we return the number of flowers in full bloom during their arrival.


Constraints:

• 1 <= flowers.length <= 5 * 104
• flowers[i].length == 2
• 1 <= starti <= endi <= 109
• 1 <= persons.length <= 5 * 104
• 1 <= persons[i] <= 109

## Solution: Prefix Sum + Binary Search

Use a treemap to store the counts (ordered by time t), when a flower begins to bloom at start, we increase m[start], when it dies at end, we decrease m[end+1]. prefix_sum[t] indicates the # of blooming flowers at time t.

For each people, use binary search to find the latest # of flowers before his arrival.

Time complexity: O(nlogn + mlogn)
Space complexity: O(n)

## C++

You are given the root of a binary tree that consists of exactly 3 nodes: the root, its left child, and its right child.

Return true if the value of the root is equal to the sum of the values of its two children, or false otherwise.

Example 1:

Input: root = [10,4,6]
Output: true
Explanation: The values of the root, its left child, and its right child are 10, 4, and 6, respectively.
10 is equal to 4 + 6, so we return true.


Example 2:

Input: root = [5,3,1]
Output: false
Explanation: The values of the root, its left child, and its right child are 5, 3, and 1, respectively.
5 is not equal to 3 + 1, so we return false.


Constraints:

• The tree consists only of the root, its left child, and its right child.
• -100 <= Node.val <= 100

## Solution:

Just want to check whether you know binary tree or not.

Time complexity: O(1)
Space complexity: O(1)