Press "Enter" to skip to content

Posts tagged as “easy”

花花酱 LeetCode 2418. Sort the People

You are given an array of strings names, and an array heights that consists of distinct positive integers. Both arrays are of length n.

For each index inames[i] and heights[i] denote the name and height of the ith person.

Return names sorted in descending order by the people’s heights.

Example 1:

Input: names = ["Mary","John","Emma"], heights = [180,165,170]
Output: ["Mary","Emma","John"]
Explanation: Mary is the tallest, followed by Emma and John.

Example 2:

Input: names = ["Alice","Bob","Bob"], heights = [155,185,150]
Output: ["Bob","Alice","Bob"]
Explanation: The first Bob is the tallest, followed by Alice and the second Bob.

Constraints:

  • n == names.length == heights.length
  • 1 <= n <= 103
  • 1 <= names[i].length <= 20
  • 1 <= heights[i] <= 105
  • names[i] consists of lower and upper case English letters.
  • All the values of heights are distinct.

Solution: Zip and sort

Time complexity: O(nlogn)
Space complexity: O(n)

C++

花花酱 LeetCode 2409. Count Days Spent Together

Alice and Bob are traveling to Rome for separate business meetings.

You are given 4 strings arriveAliceleaveAlicearriveBob, and leaveBob. Alice will be in the city from the dates arriveAlice to leaveAlice (inclusive), while Bob will be in the city from the dates arriveBob to leaveBob (inclusive). Each will be a 5-character string in the format "MM-DD", corresponding to the month and day of the date.

Return the total number of days that Alice and Bob are in Rome together.

You can assume that all dates occur in the same calendar year, which is not a leap year. Note that the number of days per month can be represented as: [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31].

Example 1:

Input: arriveAlice = "08-15", leaveAlice = "08-18", arriveBob = "08-16", leaveBob = "08-19"
Output: 3
Explanation: Alice will be in Rome from August 15 to August 18. Bob will be in Rome from August 16 to August 19. They are both in Rome together on August 16th, 17th, and 18th, so the answer is 3.

Example 2:

Input: arriveAlice = "10-01", leaveAlice = "10-31", arriveBob = "11-01", leaveBob = "12-31"
Output: 0
Explanation: There is no day when Alice and Bob are in Rome together, so we return 0.

Constraints:

  • All dates are provided in the format "MM-DD".
  • Alice and Bob’s arrival dates are earlier than or equal to their leaving dates.
  • The given dates are valid dates of a non-leap year.

Solution: Math

Convert date to days of the year.

Time complexity: O(1)
Space complexity: O(1)

C++

花花酱 LeetCode 2399. Check Distances Between Same Letters

You are given a 0-indexed string s consisting of only lowercase English letters, where each letter in s appears exactly twice. You are also given a 0-indexed integer array distance of length 26.

Each letter in the alphabet is numbered from 0 to 25 (i.e. 'a' -> 0'b' -> 1'c' -> 2, … , 'z' -> 25).

In a well-spaced string, the number of letters between the two occurrences of the ith letter is distance[i]. If the ith letter does not appear in s, then distance[i] can be ignored.

Return true if s is a well-spaced string, otherwise return false.

Example 1:

Input: s = "abaccb", distance = [1,3,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Output: true
Explanation:
- 'a' appears at indices 0 and 2 so it satisfies distance[0] = 1.
- 'b' appears at indices 1 and 5 so it satisfies distance[1] = 3.
- 'c' appears at indices 3 and 4 so it satisfies distance[2] = 0.
Note that distance[3] = 5, but since 'd' does not appear in s, it can be ignored.
Return true because s is a well-spaced string.

Example 2:

Input: s = "aa", distance = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Output: false
Explanation:
- 'a' appears at indices 0 and 1 so there are zero letters between them.
Because distance[0] = 1, s is not a well-spaced string.

Constraints:

  • 2 <= s.length <= 52
  • s consists only of lowercase English letters.
  • Each letter appears in s exactly twice.
  • distance.length == 26
  • 0 <= distance[i] <= 50

Solution: Hashtable

Use a hastable to store the index of first occurrence of each letter.

Time complexity: O(n)
Space complexity: O(26)

C++

花花酱 LeetCode 2404. Most Frequent Even Element

Given an integer array nums, return the most frequent even element.

If there is a tie, return the smallest one. If there is no such element, return -1.

Example 1:

Input: nums = [0,1,2,2,4,4,1]
Output: 2
Explanation:
The even elements are 0, 2, and 4. Of these, 2 and 4 appear the most.
We return the smallest one, which is 2.

Example 2:

Input: nums = [4,4,4,9,2,4]
Output: 4
Explanation: 4 is the even element appears the most.

Example 3:

Input: nums = [29,47,21,41,13,37,25,7]
Output: -1
Explanation: There is no even element.

Constraints:

  • 1 <= nums.length <= 2000
  • 0 <= nums[i] <= 105

Solution: Hashtable

Use a hashtable to store the frequency of even numbers.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 2395. Find Subarrays With Equal Sum

Given a 0-indexed integer array nums, determine whether there exist two subarrays of length 2 with equal sum. Note that the two subarrays must begin at different indices.

Return true if these subarrays exist, and false otherwise.

subarray is a contiguous non-empty sequence of elements within an array.

Example 1:

Input: nums = [4,2,4]
Output: true
Explanation: The subarrays with elements [4,2] and [2,4] have the same sum of 6.

Example 2:

Input: nums = [1,2,3,4,5]
Output: false
Explanation: No two subarrays of size 2 have the same sum.

Example 3:

Input: nums = [0,0,0]
Output: true
Explanation: The subarrays [nums[0],nums[1]] and [nums[1],nums[2]] have the same sum of 0. 
Note that even though the subarrays have the same content, the two subarrays are considered different because they are in different positions in the original array.

Constraints:

  • 2 <= nums.length <= 1000
  • -109 <= nums[i] <= 109

Solution: Hashset

Use a hashset to track all the sums seen so far.

Time complexity: O(n)
Space complexity: O(n)

C++