# Posts tagged as “search”

You are given a string s that consists of only digits.

Check if we can split s into two or more non-empty substrings such that the numerical values of the substrings are in descending order and the difference between numerical values of every two adjacent substrings is equal to 1.

• For example, the string s = "0090089" can be split into ["0090", "089"] with numerical values [90,89]. The values are in descending order and adjacent values differ by 1, so this way is valid.
• Another example, the string s = "001" can be split into ["0", "01"]["00", "1"], or ["0", "0", "1"]. However all the ways are invalid because they have numerical values [0,1][0,1], and [0,0,1] respectively, all of which are not in descending order.

Return true if it is possible to split s​​​​​​ as described above, or false otherwise.

substring is a contiguous sequence of characters in a string.

Example 1:

Input: s = "1234"
Output: false
Explanation: There is no valid way to split s.


Example 2:

Input: s = "050043"
Output: true
Explanation: s can be split into ["05", "004", "3"] with numerical values [5,4,3].
The values are in descending order with adjacent values differing by 1.


Example 3:

Input: s = "9080701"
Output: false
Explanation: There is no valid way to split s.


Example 4:

Input: s = "10009998"
Output: true
Explanation: s can be split into ["100", "099", "98"] with numerical values [100,99,98].
The values are in descending order with adjacent values differing by 1.


Constraints:

• 1 <= s.length <= 20
• s only consists of digits.

## Solution: DFS

Time complexity: O(2n)
Space complexity: O(n)

## C++

You would like to make dessert and are preparing to buy the ingredients. You have n ice cream base flavors and m types of toppings to choose from. You must follow these rules when making your dessert:

• There must be exactly one ice cream base.
• You can add one or more types of topping or have no toppings at all.
• There are at most two of each type of topping.

You are given three inputs:

• baseCosts, an integer array of length n, where each baseCosts[i] represents the price of the ith ice cream base flavor.
• toppingCosts, an integer array of length m, where each toppingCosts[i] is the price of one of the ith topping.
• target, an integer representing your target price for dessert.

You want to make a dessert with a total cost as close to target as possible.

Return the closest possible cost of the dessert to target. If there are multiple, return the lower one.

Example 1:

Input: baseCosts = [1,7], toppingCosts = [3,4], target = 10
Output: 10
Explanation: Consider the following combination (all 0-indexed):
- Choose base 1: cost 7
- Take 1 of topping 0: cost 1 x 3 = 3
- Take 0 of topping 1: cost 0 x 4 = 0
Total: 7 + 3 + 0 = 10.


Example 2:

Input: baseCosts = [2,3], toppingCosts = [4,5,100], target = 18
Output: 17
Explanation: Consider the following combination (all 0-indexed):
- Choose base 1: cost 3
- Take 1 of topping 0: cost 1 x 4 = 4
- Take 2 of topping 1: cost 2 x 5 = 10
- Take 0 of topping 2: cost 0 x 100 = 0
Total: 3 + 4 + 10 + 0 = 17. You cannot make a dessert with a total cost of 18.


Example 3:

Input: baseCosts = [3,10], toppingCosts = [2,5], target = 9
Output: 8
Explanation: It is possible to make desserts with cost 8 and 10. Return 8 as it is the lower cost.


Example 4:

Input: baseCosts = , toppingCosts = , target = 1
Output: 10
Explanation: Notice that you don't have to have any toppings, but you must have exactly one base.

Constraints:

• n == baseCosts.length
• m == toppingCosts.length
• 1 <= n, m <= 10
• 1 <= baseCosts[i], toppingCosts[i] <= 104
• 1 <= target <= 104

## Solution: DP / Knapsack

Pre-compute the costs of all possible combinations of toppings.

Time complexity: O(sum(toppings) * 2 * (m + n)) ~ O(10^6)
Space complexity: O(sum(toppings)) ~ O(10^5)

## Solution 2: DFS

Combination

Time complexity: O(3^m * n)
Space complexity: O(m)

## C++

You are given an integer array nums and an integer goal.

You want to choose a subsequence of nums such that the sum of its elements is the closest possible to goal. That is, if the sum of the subsequence’s elements is sum, then you want to minimize the absolute difference abs(sum - goal).

Return the minimum possible value of abs(sum - goal).

Note that a subsequence of an array is an array formed by removing some elements (possibly all or none) of the original array.

Example 1:

Input: nums = [5,-7,3,5], goal = 6
Output: 0
Explanation: Choose the whole array as a subsequence, with a sum of 6.
This is equal to the goal, so the absolute difference is 0.


Example 2:

Input: nums = [7,-9,15,-2], goal = -5
Output: 1
Explanation: Choose the subsequence [7,-9,-2], with a sum of -4.
The absolute difference is abs(-4 - (-5)) = abs(1) = 1, which is the minimum.


Example 3:

Input: nums = [1,2,3], goal = -7
Output: 7


Constraints:

• 1 <= nums.length <= 40
• -107 <= nums[i] <= 107
• -109 <= goal <= 109

## Solution: Binary Search

Since n is too large to generate sums for all subsets O(2^n), we have to split the array into half, generate two sum sets. O(2^(n/2)).

Then the problem can be reduced to find the closet sum by picking one number (sum) each from two different arrays which can be solved in O(mlogm), where m = 2^(n/2).

So final time complexity is O(n * 2^(n/2))
Space complexity: O(2^(n/2))

## C++

Given an integer n, find a sequence that satisfies all of the following:

• The integer 1 occurs once in the sequence.
• Each integer between 2 and n occurs twice in the sequence.
• For every integer i between 2 and n, the distance between the two occurrences of i is exactly i.

The distance between two numbers on the sequence, a[i] and a[j], is the absolute difference of their indices, |j - i|.

Return the lexicographically largest sequence. It is guaranteed that under the given constraints, there is always a solution.

A sequence a is lexicographically larger than a sequence b (of the same length) if in the first position where a and b differ, sequence a has a number greater than the corresponding number in b. For example, [0,1,9,0] is lexicographically larger than [0,1,5,6] because the first position they differ is at the third number, and 9 is greater than 5.

Example 1:

Input: n = 3
Output: [3,1,2,3,2]
Explanation: [2,3,2,1,3] is also a valid sequence, but [3,1,2,3,2] is the lexicographically largest valid sequence.


Example 2:

Input: n = 5
Output: [5,3,1,4,3,5,2,4,2]


Constraints:

• 1 <= n <= 20

## Solution: Search

Search from left to right, largest to smallest.

Time complexity: O(n!)?
Space complexity: O(n)

## Python3

You are given four integers, mnintrovertsCount, and extrovertsCount. You have an m x n grid, and there are two types of people: introverts and extroverts. There are introvertsCount introverts and extrovertsCount extroverts.

You should decide how many people you want to live in the grid and assign each of them one grid cell. Note that you do not have to have all the people living in the grid.

The happiness of each person is calculated as follows:

• Introverts start with 120 happiness and lose 30 happiness for each neighbor (introvert or extrovert).
• Extroverts start with 40 happiness and gain 20 happiness for each neighbor (introvert or extrovert).

Neighbors live in the directly adjacent cells north, east, south, and west of a person’s cell.

The grid happiness is the sum of each person’s happiness. Return the maximum possible grid happiness.

Example 1:

Input: m = 2, n = 3, introvertsCount = 1, extrovertsCount = 2
Output: 240
Explanation: Assume the grid is 1-indexed with coordinates (row, column).
We can put the introvert in cell (1,1) and put the extroverts in cells (1,3) and (2,3).
- Introvert at (1,1) happiness: 120 (starting happiness) - (0 * 30) (0 neighbors) = 120
- Extrovert at (1,3) happiness: 40 (starting happiness) + (1 * 20) (1 neighbor) = 60
- Extrovert at (2,3) happiness: 40 (starting happiness) + (1 * 20) (1 neighbor) = 60
The grid happiness is 120 + 60 + 60 = 240.
The above figure shows the grid in this example with each person's happiness. The introvert stays in the light green cell while the extroverts live on the light purple cells.


Example 2:

Input: m = 3, n = 1, introvertsCount = 2, extrovertsCount = 1
Output: 260
Explanation: Place the two introverts in (1,1) and (3,1) and the extrovert at (2,1).
- Introvert at (1,1) happiness: 120 (starting happiness) - (1 * 30) (1 neighbor) = 90
- Extrovert at (2,1) happiness: 40 (starting happiness) + (2 * 20) (2 neighbors) = 80
- Introvert at (3,1) happiness: 120 (starting happiness) - (1 * 30) (1 neighbor) = 90
The grid happiness is 90 + 80 + 90 = 260.


Example 3:

Input: m = 2, n = 2, introvertsCount = 4, extrovertsCount = 0
Output: 240


Constraints:

• 1 <= m, n <= 5
• 0 <= introvertsCount, extrovertsCount <= min(m * n, 6)

## Solution: DP

dp(x, y, in, ex, mask) := max score at (x, y) with in and ex left and the state of previous row is mask.

Mask is ternary, mask(i) = {0, 1, 2} means {empty, in, ex}, there are at most 3^n = 3^5 = 243 different states.

Total states / Space complexity: O(m*n*3^n*in*ex) = 5*5*3^5*6*6
Space complexity: O(m*n*3^n*in*ex)