Press "Enter" to skip to content

Posts published in “Dynamic Programming”

花花酱 LeetCode 1575. Count All Possible Routes

You are given an array of distinct positive integers locations where locations[i] represents the position of city i. You are also given integers startfinish and fuel representing the starting city, ending city, and the initial amount of fuel you have, respectively.

At each step, if you are at city i, you can pick any city j such that j != i and 0 <= j < locations.length and move to city j. Moving from city i to city j reduces the amount of fuel you have by |locations[i] - locations[j]|. Please notice that |x| denotes the absolute value of x.

Notice that fuel cannot become negative at any point in time, and that you are allowed to visit any city more than once (including start and finish).

Return the count of all possible routes from start to finish.

Since the answer may be too large, return it modulo 10^9 + 7.

Example 1:

Input: locations = [2,3,6,8,4], start = 1, finish = 3, fuel = 5
Output: 4
Explanation: The following are all possible routes, each uses 5 units of fuel:
1 -> 3
1 -> 2 -> 3
1 -> 4 -> 3
1 -> 4 -> 2 -> 3

Example 2:

Input: locations = [4,3,1], start = 1, finish = 0, fuel = 6
Output: 5
Explanation: The following are all possible routes:
1 -> 0, used fuel = 1
1 -> 2 -> 0, used fuel = 5
1 -> 2 -> 1 -> 0, used fuel = 5
1 -> 0 -> 1 -> 0, used fuel = 3
1 -> 0 -> 1 -> 0 -> 1 -> 0, used fuel = 5

Example 3:

Input: locations = [5,2,1], start = 0, finish = 2, fuel = 3
Output: 0
Explanation: It's impossible to get from 0 to 2 using only 3 units of fuel since the shortest route needs 4 units of fuel.

Example 4:

Input: locations = [2,1,5], start = 0, finish = 0, fuel = 3
Output: 2
Explanation: There are two possible routes, 0 and 0 -> 1 -> 0.

Example 5:

Input: locations = [1,2,3], start = 0, finish = 2, fuel = 40
Output: 615088286
Explanation: The total number of possible routes is 2615088300. Taking this number modulo 10^9 + 7 gives us 615088286.

Constraints:

  • 2 <= locations.length <= 100
  • 1 <= locations[i] <= 10^9
  • All integers in locations are distinct.
  • 0 <= start, finish < locations.length
  • 1 <= fuel <= 200

Solution: DP

dp[j][f] := # of ways to start from city ‘start’ to reach city ‘j’ with fuel level f.

dp[j][f] = sum(dp[i][f + d]) d = dist(i, j)

init: dp[start][fuel] = 1

Time complexity: O(n^2*fuel)
Space complexity: O(n*fuel)

C++

Python3

花花酱 LeetCode 1567. Maximum Length of Subarray With Positive Product

Given an array of integers nums, find the maximum length of a subarray where the product of all its elements is positive.

A subarray of an array is a consecutive sequence of zero or more values taken out of that array.

Return the maximum length of a subarray with positive product.

Example 1:

Input: nums = [1,-2,-3,4]
Output: 4
Explanation: The array nums already has a positive product of 24.

Example 2:

Input: nums = [0,1,-2,-3,-4]
Output: 3
Explanation: The longest subarray with positive product is [1,-2,-3] which has a product of 6.
Notice that we cannot include 0 in the subarray since that'll make the product 0 which is not positive.

Example 3:

Input: nums = [-1,-2,-3,0,1]
Output: 2
Explanation: The longest subarray with positive product is [-1,-2] or [-2,-3].

Example 4:

Input: nums = [-1,2]
Output: 1

Example 5:

Input: nums = [1,2,3,5,-6,4,0,10]
Output: 4

Constraints:

  • 1 <= nums.length <= 10^5
  • -10^9 <= nums[i] <= 10^9

Solution: DP

p[i] := max length of positive products ends with arr[i]
n[i] := max length of negtive products ends with arr[i]

if arr[i] > 0: p[i] = p[i – 1] + 1, n[i] = n[i] + 1 if n[i] else 0
if arr[i] < 0: p[i] = n[i – 1] + 1 if n[i – 1] else 0, n[i] = p[i – 1] + 1
if arr[i] == 0: p[i] = n[i] = 0
ans = max(p[i])

Time complexity: O(n)
Space complexity: O(n) -> O(1)

C++

花花酱 LeetCode 1563. Stone Game V

There are several stones arranged in a row, and each stone has an associated value which is an integer given in the array stoneValue.

In each round of the game, Alice divides the row into two non-empty rows (i.e. left row and right row), then Bob calculates the value of each row which is the sum of the values of all the stones in this row. Bob throws away the row which has the maximum value, and Alice’s score increases by the value of the remaining row. If the value of the two rows are equal, Bob lets Alice decide which row will be thrown away. The next round starts with the remaining row.

The game ends when there is only one stone remaining. Alice’s is initially zero.

Return the maximum score that Alice can obtain.

Example 1:

Input: stoneValue = [6,2,3,4,5,5]
Output: 18
Explanation: In the first round, Alice divides the row to [6,2,3], [4,5,5]. The left row has the value 11 and the right row has value 14. Bob throws away the right row and Alice's score is now 11.
In the second round Alice divides the row to [6], [2,3]. This time Bob throws away the left row and Alice's score becomes 16 (11 + 5).
The last round Alice has only one choice to divide the row which is [2], [3]. Bob throws away the right row and Alice's score is now 18 (16 + 2). The game ends because only one stone is remaining in the row.

Example 2:

Input: stoneValue = [7,7,7,7,7,7,7]
Output: 28

Example 3:

Input: stoneValue = [4]
Output: 0

Constraints:

  • 1 <= stoneValue.length <= 500
  • 1 <= stoneValue[i] <= 10^6

Solution: Range DP + Prefix Sum

dp[l][r] := max store Alice can get from range [l, r]
sum_l = sum(l, k), sum_r = sum(k + 1, r)
dp[l][r] = max{
dp[l][k] + sum_l if sum_l < sum_r
dp[k+1][r] + sum_r if sum_r < sum_l
max(dp[l][k], dp[k+1][r])) + sum_l if sum_l == sum_r)
} for k in [l, r)

Time complexity: O(n^3)
Space complexity: O(n^2)

C++

花花酱 LeetCode 1553. Minimum Number of Days to Eat N Oranges

There are n oranges in the kitchen and you decided to eat some of these oranges every day as follows:

  • Eat one orange.
  • If the number of remaining oranges (n) is divisible by 2 then you can eat  n/2 oranges.
  • If the number of remaining oranges (n) is divisible by 3 then you can eat  2*(n/3) oranges.

You can only choose one of the actions per day.

Return the minimum number of days to eat n oranges.

Example 1:

Input: n = 10
Output: 4
Explanation: You have 10 oranges.
Day 1: Eat 1 orange,  10 - 1 = 9.  
Day 2: Eat 6 oranges, 9 - 2*(9/3) = 9 - 6 = 3. (Since 9 is divisible by 3)
Day 3: Eat 2 oranges, 3 - 2*(3/3) = 3 - 2 = 1. 
Day 4: Eat the last orange  1 - 1  = 0.
You need at least 4 days to eat the 10 oranges.

Example 2:

Input: n = 6
Output: 3
Explanation: You have 6 oranges.
Day 1: Eat 3 oranges, 6 - 6/2 = 6 - 3 = 3. (Since 6 is divisible by 2).
Day 2: Eat 2 oranges, 3 - 2*(3/3) = 3 - 2 = 1. (Since 3 is divisible by 3)
Day 3: Eat the last orange  1 - 1  = 0.
You need at least 3 days to eat the 6 oranges.

Example 3:

Input: n = 1
Output: 1

Example 4:

Input: n = 56
Output: 6

Constraints:

  • 1 <= n <= 2*10^9

Solution: Greedy + DP

Eat oranges one by one to make it a multiply of 2 or 3 such that we can eat 50% or 66.66…% of the oranges in one step.
dp(n) := min steps to finish n oranges.
base case n <= 1, dp(n) = n
transition: dp(n) = 1 + min(n%2 + dp(n/2), n % 3 + dp(n / 3))
e.g. n = 11,
we eat 11%2 = 1 in one step, left = 10 and then eat 10 / 2 = 5 in another step. 5 left for the subproblem.
we eat 11%3 = 2 in two steps, left = 9 and then eat 9 * 2 / 3 = 6 in another step, 3 left for the subproblem.
dp(11) = 1 + min(1 + dp(5), 2 + dp(3))

T(n) = 2*T(n/2) + O(1) = O(n)
Time complexity: O(n) // w/o memoization, close to O(logn) in practice.
Space complexity: O(logn)

C++

Java

Python3

Solution 2: BFS

if x % 2 == 0, push x/2 onto the queue
if x % 3 == 0, push x/3 onto the queue
always push x – 1 onto the queue

C++

花花酱 LeetCode 1547. Minimum Cost to Cut a Stick

Given a wooden stick of length n units. The stick is labelled from 0 to n. For example, a stick of length 6 is labelled as follows:

Given an integer array cuts where cuts[i] denotes a position you should perform a cut at.

You should perform the cuts in order, you can change the order of the cuts as you wish.

The cost of one cut is the length of the stick to be cut, the total cost is the sum of costs of all cuts. When you cut a stick, it will be split into two smaller sticks (i.e. the sum of their lengths is the length of the stick before the cut). Please refer to the first example for a better explanation.

Return the minimum total cost of the cuts.

Example 1:

Input: n = 7, cuts = [1,3,4,5]
Output: 16
Explanation: Using cuts order = [1, 3, 4, 5] as in the input leads to the following scenario:

The first cut is done to a rod of length 7 so the cost is 7. The second cut is done to a rod of length 6 (i.e. the second part of the first cut), the third is done to a rod of length 4 and the last cut is to a rod of length 3. The total cost is 7 + 6 + 4 + 3 = 20.
Rearranging the cuts to be [3, 5, 1, 4] for example will lead to a scenario with total cost = 16 (as shown in the example photo 7 + 4 + 3 + 2 = 16).

Example 2:

Input: n = 9, cuts = [5,6,1,4,2]
Output: 22
Explanation: If you try the given cuts ordering the cost will be 25.
There are much ordering with total cost <= 25, for example, the order [4, 6, 5, 2, 1] has total cost = 22 which is the minimum possible.

Constraints:

  • 2 <= n <= 10^6
  • 1 <= cuts.length <= min(n - 1, 100)
  • 1 <= cuts[i] <= n - 1
  • All the integers in cuts array are distinct.

Solution: Range DP

dp[i][j] := min cost to finish the i-th cuts to the j-th (in sorted order)
dp[i][j] = r – l + min(dp[i][k – 1], dp[k + 1][j]) # [l, r] is the current stick range.

Time complexity: O(n^3)
Space complexity: O(n^2)

C++

Java

Python3