Press "Enter" to skip to content

Posts published in “Bit”

花花酱 LeetCode 393. UTF-8 Validation

A character in UTF8 can be from 1 to 4 bytes long, subjected to the following rules:

  1. For 1-byte character, the first bit is a 0, followed by its unicode code.
  2. For n-bytes character, the first n-bits are all one’s, the n+1 bit is 0, followed by n-1 bytes with most significant 2 bits being 10.

This is how the UTF-8 encoding would work:

Given an array of integers representing the data, return whether it is a valid utf-8 encoding.

Note:
The input is an array of integers. Only the least significant 8 bits of each integer is used to store the data. This means each integer represents only 1 byte of data.

Example 1:

data = [197, 130, 1], which represents the octet sequence: 11000101 10000010 00000001.

Return true.
It is a valid utf-8 encoding for a 2-bytes character followed by a 1-byte character.

Example 2:

data = [235, 140, 4], which represented the octet sequence: 11101011 10001100 00000100.

Return false.
The first 3 bits are all one's and the 4th bit is 0 means it is a 3-bytes character.
The next byte is a continuation byte which starts with 10 and that's correct.
But the second continuation byte does not start with 10, so it is invalid.

Solution: Bit Operation

Check the first byte of a character and find out the number of bytes (from 0 to 3) left to check. The left bytes must start with 0b10.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1318. Minimum Flips to Make a OR b Equal to c

Given 3 positives numbers ab and c. Return the minimum flips required in some bits of a and b to make ( a OR b == c ). (bitwise OR operation).
Flip operation consists of change any single bit 1 to 0 or change the bit 0 to 1 in their binary representation.

Example 1:

Input: a = 2, b = 6, c = 5
Output: 3
Explanation: After flips a = 1 , b = 4 , c = 5 such that (a OR b == c)

Example 2:

Input: a = 4, b = 2, c = 7
Output: 1

Example 3:

Input: a = 1, b = 2, c = 3
Output: 0

Constraints:

  • 1 <= a <= 10^9
  • 1 <= b <= 10^9
  • 1 <= c <= 10^9

Solution: Bit operation

If the bit of c is 1, a / b at least has one 1. cost = 1 – ((a | b) & 1)
If the bit of c is 0, a / b must be 0, cost = (a & 1) + (b & 1)

Time complexity: O(32)
Space complexity: O(1)

C++

花花酱 LeetCode 190. Reverse Bits

Reverse bits of a given 32 bits unsigned integer.

Example 1:

Input: 00000010100101000001111010011100
Output: 00111001011110000010100101000000
Explanation: The input binary string 00000010100101000001111010011100 represents the unsigned integer 43261596, so return 964176192 which its binary representation is 00111001011110000010100101000000.

Example 2:

Input: 11111111111111111111111111111101
Output: 10111111111111111111111111111111
Explanation: The input binary string 11111111111111111111111111111101 represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is 10101111110010110010011101101001.

Note:

  • Note that in some languages such as Java, there is no unsigned integer type. In this case, both input and output will be given as signed integer type and should not affect your implementation, as the internal binary representation of the integer is the same whether it is signed or unsigned.
  • In Java, the compiler represents the signed integers using 2’s complement notation. Therefore, in Example 2 above the input represents the signed integer -3 and the output represents the signed integer -1073741825.

Follow up:

If this function is called many times, how would you optimize it?

Solution: Bit operation

Time complexity: O(1)
Space complexity: O(1)

C++

花花酱 LeetCode 1012. Complement of Base 10 Integer

Every non-negative integer N has a binary representation.  For example, 5 can be represented as "101" in binary, 11 as "1011" in binary, and so on.  Note that except for N = 0, there are no leading zeroes in any binary representation.

The complement of a binary representation is the number in binary you get when changing every 1 to a 0 and 0 to a 1.  For example, the complement of "101" in binary is "010" in binary.

For a given number N in base-10, return the complement of it’s binary representation as a base-10 integer.

Example 1:

Input: 5
Output: 2
Explanation: 5 is "101" in binary, with complement "010" in binary, which is 2 in base-10.

Example 2:

Input: 7
Output: 0
Explanation: 7 is "111" in binary, with complement "000" in binary, which is 0 in base-10.

Example 3:

Input: 10
Output: 5
Explanation: 10 is "1010" in binary, with complement "0101" in binary, which is 5 in base-10.

Note:

  1. 0 <= N < 10^9

Solution: Bit

Find the smallest binary number c that is all 1s, (e.g. “111”, “11111”) that is greater or equal to N.
ans = C ^ N or C – N

Time complexity: O(log(n))
Space complexity: O(1)

C++

花花酱 LeetCode 982. Triples with Bitwise AND Equal To Zero

Given an array of integers A, find the number of triples of indices (i, j, k) such that:

  • 0 <= i < A.length
  • 0 <= j < A.length
  • 0 <= k < A.length
  • A[i] & A[j] & A[k] == 0, where & represents the bitwise-AND operator.

Example 1:

Input: [2,1,3]
Output: 12
Explanation: We could choose the following i, j, k triples:
(i=0, j=0, k=1) : 2 & 2 & 1
(i=0, j=1, k=0) : 2 & 1 & 2
(i=0, j=1, k=1) : 2 & 1 & 1
(i=0, j=1, k=2) : 2 & 1 & 3
(i=0, j=2, k=1) : 2 & 3 & 1
(i=1, j=0, k=0) : 1 & 2 & 2
(i=1, j=0, k=1) : 1 & 2 & 1
(i=1, j=0, k=2) : 1 & 2 & 3
(i=1, j=1, k=0) : 1 & 1 & 2
(i=1, j=2, k=0) : 1 & 3 & 2
(i=2, j=0, k=1) : 3 & 2 & 1
(i=2, j=1, k=0) : 3 & 1 & 2

Note:

  1. 1 <= A.length <= 1000
  2. 0 <= A[i] < 2^16

Solution: Counting

Time complexity: O(n^2 + n * max(A))
Space complexity: O(max(A))

C++