Press "Enter" to skip to content

Posts tagged as “hashtable”

花花酱 LeetCode 2399. Check Distances Between Same Letters

You are given a 0-indexed string s consisting of only lowercase English letters, where each letter in s appears exactly twice. You are also given a 0-indexed integer array distance of length 26.

Each letter in the alphabet is numbered from 0 to 25 (i.e. 'a' -> 0'b' -> 1'c' -> 2, … , 'z' -> 25).

In a well-spaced string, the number of letters between the two occurrences of the ith letter is distance[i]. If the ith letter does not appear in s, then distance[i] can be ignored.

Return true if s is a well-spaced string, otherwise return false.

Example 1:

Input: s = "abaccb", distance = [1,3,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Output: true
Explanation:
- 'a' appears at indices 0 and 2 so it satisfies distance[0] = 1.
- 'b' appears at indices 1 and 5 so it satisfies distance[1] = 3.
- 'c' appears at indices 3 and 4 so it satisfies distance[2] = 0.
Note that distance[3] = 5, but since 'd' does not appear in s, it can be ignored.
Return true because s is a well-spaced string.

Example 2:

Input: s = "aa", distance = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Output: false
Explanation:
- 'a' appears at indices 0 and 1 so there are zero letters between them.
Because distance[0] = 1, s is not a well-spaced string.

Constraints:

  • 2 <= s.length <= 52
  • s consists only of lowercase English letters.
  • Each letter appears in s exactly twice.
  • distance.length == 26
  • 0 <= distance[i] <= 50

Solution: Hashtable

Use a hastable to store the index of first occurrence of each letter.

Time complexity: O(n)
Space complexity: O(26)

C++

花花酱 LeetCode 2405. Optimal Partition of String

Given a string s, partition the string into one or more substrings such that the characters in each substring are unique. That is, no letter appears in a single substring more than once.

Return the minimum number of substrings in such a partition.

Note that each character should belong to exactly one substring in a partition.

Example 1:

Input: s = "abacaba"
Output: 4
Explanation:
Two possible partitions are ("a","ba","cab","a") and ("ab","a","ca","ba").
It can be shown that 4 is the minimum number of substrings needed.

Example 2:

Input: s = "ssssss"
Output: 6
Explanation:
The only valid partition is ("s","s","s","s","s","s").

Constraints:

  • 1 <= s.length <= 105
  • s consists of only English lowercase letters.

Solution: Greedy

Extend the cur string as long as possible unless a duplicate character occurs.

You can use hashtable / array or bitmask to mark whether a character has been seen so far.

Time complexity: O(n)
Space complexity: O(1)

C++

C++

C++

花花酱 LeetCode 2404. Most Frequent Even Element

Given an integer array nums, return the most frequent even element.

If there is a tie, return the smallest one. If there is no such element, return -1.

Example 1:

Input: nums = [0,1,2,2,4,4,1]
Output: 2
Explanation:
The even elements are 0, 2, and 4. Of these, 2 and 4 appear the most.
We return the smallest one, which is 2.

Example 2:

Input: nums = [4,4,4,9,2,4]
Output: 4
Explanation: 4 is the even element appears the most.

Example 3:

Input: nums = [29,47,21,41,13,37,25,7]
Output: -1
Explanation: There is no even element.

Constraints:

  • 1 <= nums.length <= 2000
  • 0 <= nums[i] <= 105

Solution: Hashtable

Use a hashtable to store the frequency of even numbers.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 2260. Minimum Consecutive Cards to Pick Up

You are given an integer array cards where cards[i] represents the value of the ith card. A pair of cards are matching if the cards have the same value.

Return the minimum number of consecutive cards you have to pick up to have a pair of matching cards among the picked cards. If it is impossible to have matching cards, return -1.

Example 1:

Input: cards = [3,4,2,3,4,7]
Output: 4
Explanation: We can pick up the cards [3,4,2,3] which contain a matching pair of cards with value 3. Note that picking up the cards [4,2,3,4] is also optimal.

Example 2:

Input: cards = [1,0,5,3]
Output: -1
Explanation: There is no way to pick up a set of consecutive cards that contain a pair of matching cards.

Constraints:

  • 1 <= cards.length <= 105
  • 0 <= cards[i] <= 106

Solution: Hashtable

Record the last position of each number,
ans = min{cardi – last[cardi]}

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 2248. Intersection of Multiple Arrays

Given a 2D integer array nums where nums[i] is a non-empty array of distinct positive integers, return the list of integers that are present in each array ofnums sorted in ascending order.

Example 1:

Input: nums = [[3,1,2,4,5],[1,2,3,4],[3,4,5,6]]
Output: [3,4]
Explanation: 
The only integers present in each of nums[0] = [3,1,2,4,5], nums[1] = [1,2,3,4], and nums[2] = [3,4,5,6] are 3 and 4, so we return [3,4].

Example 2:

Input: nums = [[1,2,3],[4,5,6]]
Output: []
Explanation: 
There does not exist any integer present both in nums[0] and nums[1], so we return an empty list [].

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= sum(nums[i].length) <= 1000
  • 1 <= nums[i][j] <= 1000
  • All the values of nums[i] are unique.

Solution: Hashtable

Time complexity: O(n)
Space complexity: O(n)

C++