# Posts tagged as “hashtable”

You are given an array of strings words (0-indexed).

In one operation, pick two distinct indices i and j, where words[i] is a non-empty string, and move any character from words[i] to any position in words[j].

Return true if you can make every string in words equal using any number of operations, and false otherwise.

Example 1:

Input: words = ["abc","aabc","bc"]
Output: true
Explanation: Move the first 'a' in words to the front of words,
to make words = "abc" and words = "abc".
All the strings are now equal to "abc", so return true.


Example 2:

Input: words = ["ab","a"]
Output: false
Explanation: It is impossible to make all the strings equal using the operation.


Constraints:

• 1 <= words.length <= 100
• 1 <= words[i].length <= 100
• words[i] consists of lowercase English letters.

## Solution: Hashtable

Count the frequency of each character, it must be a multiplier of n such that we can evenly distribute it to all the words.
e.g. n = 3, a = 9, b = 6, c = 3, each word will be “aaabbc”.

Time complexity: O(n)
Space complexity: O(1)

## Python3 one-liner

You are given a 2D integer array ranges and two integers left and right. Each ranges[i] = [starti, endi] represents an inclusive interval between starti and endi.

Return true if each integer in the inclusive range [left, right] is covered by at least one interval in ranges. Return false otherwise.

An integer x is covered by an interval ranges[i] = [starti, endi] if starti <= x <= endi.

Example 1:

Input: ranges = [[1,2],[3,4],[5,6]], left = 2, right = 5
Output: true
Explanation: Every integer between 2 and 5 is covered:
- 2 is covered by the first range.
- 3 and 4 are covered by the second range.
- 5 is covered by the third range.


Example 2:

Input: ranges = [[1,10],[10,20]], left = 21, right = 21
Output: false
Explanation: 21 is not covered by any range.


Constraints:

• 1 <= ranges.length <= 50
• 1 <= starti <= endi <= 50
• 1 <= left <= right <= 50

## Solution 1: Hashtable

Time complexity: O(n * (right – left))
Space complexity: O(right – left)

## C++

You are given two integer arrays nums1 and nums2. You are tasked to implement a data structure that supports queries of two types:

1. Add a positive integer to an element of a given index in the array nums2.
2. Count the number of pairs (i, j) such that nums1[i] + nums2[j] equals a given value (0 <= i < nums1.length and 0 <= j < nums2.length).

Implement the FindSumPairs class:

• FindSumPairs(int[] nums1, int[] nums2) Initializes the FindSumPairs object with two integer arrays nums1 and nums2.
• void add(int index, int val) Adds val to nums2[index], i.e., apply nums2[index] += val.
• int count(int tot) Returns the number of pairs (i, j) such that nums1[i] + nums2[j] == tot.

Example 1:

Input
[[[1, 1, 2, 2, 2, 3], [1, 4, 5, 2, 5, 4]], , [3, 2], , , [0, 1], [1, 1], ]
Output
[null, 8, null, 2, 1, null, null, 11]
Explanation
FindSumPairs findSumPairs = new FindSumPairs([1, 1, 2, 2, 2, 3], [1, 4, 5, 2, 5, 4]);
findSumPairs.count(7); // return 8; pairs (2,2), (3,2), (4,2), (2,4), (3,4), (4,4) make 2 + 5 and pairs (5,1), (5,5) make 3 + 4
findSumPairs.add(3, 2); // now nums2 = [1,4,5,4,5,4]
findSumPairs.count(8); // return 2; pairs (5,2), (5,4) make 3 + 5
findSumPairs.count(4); // return 1; pair (5,0) makes 3 + 1
findSumPairs.add(0, 1); // now nums2 = [2,4,5,4,5,4]
findSumPairs.add(1, 1); // now nums2 = [2,5,5,4,5,4]
findSumPairs.count(7); // return 11; pairs (2,1), (2,2), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,4) make 2 + 5 and pairs (5,3), (5,5) make 3 + 4


Constraints:

• 1 <= nums1.length <= 1000
• 1 <= nums2.length <= 105
• 1 <= nums1[i] <= 109
• 1 <= nums2[i] <= 105
• 0 <= index < nums2.length
• 1 <= val <= 105
• 1 <= tot <= 109
• At most 1000 calls are made to add and count each.

## Solution: HashTable

Note nums1 and nums2 are unbalanced. Brute force method will take O(m*n) = O(103*105) = O(108) for each count call which will TLE. We could use a hashtable to store the counts of elements from nums2, and only iterate over nums1 to reduce the time complexity.

Time complexity:

init: O(m) + O(n)
count: O(m)

Total time is less than O(106)

Space complexity: O(m + n)

## Python3

pangram is a sentence where every letter of the English alphabet appears at least once.

Given a string sentence containing only lowercase English letters, returntrue if sentence is a pangram, or false otherwise.

Example 1:

Input: sentence = "thequickbrownfoxjumpsoverthelazydog"
Output: true
Explanation: sentence contains at least one of every letter of the English alphabet.


Example 2:

Input: sentence = "leetcode"
Output: false


Constraints:

• 1 <= sentence.length <= 1000
• sentence consists of lowercase English letters.

## Solution: Hashset

Time complexity: O(n)
Space complexity: O(26)

## Python3

You are given the logs for users’ actions on LeetCode, and an integer k. The logs are represented by a 2D integer array logs where each logs[i] = [IDi, timei] indicates that the user with IDi performed an action at the minute timei.

Multiple users can perform actions simultaneously, and a single user can perform multiple actions in the same minute.

The user active minutes (UAM) for a given user is defined as the number of unique minutes in which the user performed an action on LeetCode. A minute can only be counted once, even if multiple actions occur during it.

You are to calculate a 1-indexed array answer of size k such that, for each j (1 <= j <= k), answer[j] is the number of users whose UAM equals j.

Return the array answer as described above.

Example 1:

Input: logs = [[0,5],[1,2],[0,2],[0,5],[1,3]], k = 5
Output: [0,2,0,0,0]
Explanation:
The user with ID=0 performed actions at minutes 5, 2, and 5 again. Hence, they have a UAM of 2 (minute 5 is only counted once).
The user with ID=1 performed actions at minutes 2 and 3. Hence, they have a UAM of 2.
Since both users have a UAM of 2, answer is 2, and the remaining answer[j] values are 0.


Example 2:

Input: logs = [[1,1],[2,2],[2,3]], k = 4
Output: [1,1,0,0]
Explanation:
The user with ID=1 performed a single action at minute 1. Hence, they have a UAM of 1.
The user with ID=2 performed actions at minutes 2 and 3. Hence, they have a UAM of 2.
There is one user with a UAM of 1 and one with a UAM of 2.
Hence, answer = 1, answer = 1, and the remaining values are 0.


Constraints:

• 1 <= logs.length <= 104
• 0 <= IDi <= 109
• 1 <= timei <= 105
• k is in the range [The maximum UAM for a user, 105].

## Solution: Hashsets in a Hashtable

key: user_id, value: set{time}

Time complexity: O(n + k)
Space complexity: O(n + k)