Press "Enter" to skip to content

Posts tagged as “geometry”

花花酱 LeetCode 1401. Circle and Rectangle Overlapping

Given a circle represented as (radiusx_centery_center) and an axis-aligned rectangle represented as (x1y1x2y2), where (x1y1) are the coordinates of the bottom-left corner, and (x2y2) are the coordinates of the top-right corner of the rectangle.

Return True if the circle and rectangle are overlapped otherwise return False.

In other words, check if there are any point (xi, yi) such that belongs to the circle and the rectangle at the same time.

Example 1:

Input: radius = 1, x_center = 0, y_center = 0, x1 = 1, y1 = -1, x2 = 3, y2 = 1
Output: true
Explanation: Circle and rectangle share the point (1,0) 

Example 2:

Input: radius = 1, x_center = 0, y_center = 0, x1 = -1, y1 = 0, x2 = 0, y2 = 1
Output: true

Example 3:

Input: radius = 1, x_center = 1, y_center = 1, x1 = -3, y1 = -3, x2 = 3, y2 = 3
Output: true

Example 4:

Input: radius = 1, x_center = 1, y_center = 1, x1 = 1, y1 = -3, x2 = 2, y2 = -1
Output: false

Constraints:

  • 1 <= radius <= 2000
  • -10^4 <= x_center, y_center, x1, y1, x2, y2 <= 10^4
  • x1 < x2
  • y1 < y2

Solution: Geometry

Find the shortest distance from the center to the rectangle, return dist <= radius.

Time complexity: O(1)
Space complexity: O(1)

C++

花花酱 LeetCode 1386. Cinema Seat Allocation

A cinema has n rows of seats, numbered from 1 to n and there are ten seats in each row, labelled from 1 to 10 as shown in the figure above.

Given the array reservedSeats containing the numbers of seats already reserved, for example, reservedSeats[i]=[3,8] means the seat located in row 3 and labelled with 8 is already reserved. 

Return the maximum number of four-person families you can allocate on the cinema seats. A four-person family occupies fours seats in one row, that are next to each other. Seats across an aisle (such as [3,3] and [3,4]) are not considered to be next to each other, however, It is permissible for the four-person family to be separated by an aisle, but in that case, exactly two people have to sit on each side of the aisle.

Example 1:

Input: n = 3, reservedSeats = [[1,2],[1,3],[1,8],[2,6],[3,1],[3,10]]
Output: 4
Explanation: The figure above shows the optimal allocation for four families, where seats mark with blue are already reserved and contiguous seats mark with orange are for one family. 

Example 2:

Input: n = 2, reservedSeats = [[2,1],[1,8],[2,6]]
Output: 2

Example 3:

Input: n = 4, reservedSeats = [[4,3],[1,4],[4,6],[1,7]]
Output: 4

Constraints:

  • 1 <= n <= 10^9
  • 1 <= reservedSeats.length <= min(10*n, 10^4)
  • reservedSeats[i].length == 2
  • 1 <= reservedSeats[i][0] <= n
  • 1 <= reservedSeats[i][1] <= 10
  • All reservedSeats[i] are distinct.

Solution: HashTable + Greedy

if both seat[2~5] seat[6~9] are empty, seat two groups.
if any of seat[2~5] seat[4~7] seat[6~9] is empty seat one group.
if there is no one sit in a row, seat two groups.

Time complexity: O(|reservedSeats|)
Space complexity: O(|rows|)

C++

花花酱 LeetCode 1326. Minimum Number of Taps to Open to Water a Garden

There is a one-dimensional garden on the x-axis. The garden starts at the point 0 and ends at the point n. (i.e The length of the garden is n).

There are n + 1 taps located at points [0, 1, ..., n] in the garden.

Given an integer n and an integer array ranges of length n + 1 where ranges[i] (0-indexed) means the i-th tap can water the area [i - ranges[i], i + ranges[i]] if it was open.

Return the minimum number of taps that should be open to water the whole garden, If the garden cannot be watered return -1.

Example 1:

Input: n = 5, ranges = [3,4,1,1,0,0]
Output: 1
Explanation: The tap at point 0 can cover the interval [-3,3]
The tap at point 1 can cover the interval [-3,5]
The tap at point 2 can cover the interval [1,3]
The tap at point 3 can cover the interval [2,4]
The tap at point 4 can cover the interval [4,4]
The tap at point 5 can cover the interval [5,5]
Opening Only the second tap will water the whole garden [0,5]

Example 2:

Input: n = 3, ranges = [0,0,0,0]
Output: -1
Explanation: Even if you activate all the four taps you cannot water the whole garden.

Example 3:

Input: n = 7, ranges = [1,2,1,0,2,1,0,1]
Output: 3

Example 4:

Input: n = 8, ranges = [4,0,0,0,0,0,0,0,4]
Output: 2

Example 5:

Input: n = 8, ranges = [4,0,0,0,4,0,0,0,4]
Output: 1

Constraints:

  • 1 <= n <= 10^4
  • ranges.length == n + 1
  • 0 <= ranges[i] <= 100

Solution 1: Greedy

Reduce to 1024. Video Stitching

Time complexity: O(nlogn)
Space complexity: O(n)

C++

Solution 2: Greedy

Reduce to 45. Jump Game II

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1272. Remove Interval

Given a sorted list of disjoint intervals, each interval intervals[i] = [a, b] represents the set of real numbers x such that a <= x < b.

We remove the intersections between any interval in intervals and the interval toBeRemoved.

Return a sorted list of intervals after all such removals.

Example 1:

Input: intervals = [[0,2],[3,4],[5,7]], toBeRemoved = [1,6]
Output: [[0,1],[6,7]]

Example 2:

Input: intervals = [[0,5]], toBeRemoved = [2,3]
Output: [[0,2],[3,5]]

Constraints:

  • 1 <= intervals.length <= 10^4
  • -10^9 <= intervals[i][0] < intervals[i][1] <= 10^9

Solution: Geometry

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1266. Minimum Time Visiting All Points

On a plane there are n points with integer coordinates points[i] = [xi, yi]. Your task is to find the minimum time in seconds to visit all points.

You can move according to the next rules:

  • In one second always you can either move vertically, horizontally by one unit or diagonally (it means to move one unit vertically and one unit horizontally in one second).
  • You have to visit the points in the same order as they appear in the array.

Example 1:

Input: points = [[1,1],[3,4],[-1,0]]
Output: 7
Explanation: One optimal path is [1,1] -> [2,2] -> [3,3] -> [3,4] -> [2,3] -> [1,2] -> [0,1] -> [-1,0]   
Time from [1,1] to [3,4] = 3 seconds 
Time from [3,4] to [-1,0] = 4 seconds
Total time = 7 seconds

Example 2:

Input: points = [[3,2],[-2,2]]
Output: 5

Constraints:

  • points.length == n
  • 1 <= n <= 100
  • points[i].length == 2
  • -1000 <= points[i][0], points[i][1] <= 1000

Solution: Geometry + Greedy

dx = abs(x1 – x2)
dy = abs(y1 – y2)

go diagonally first for min(dx, dy) steps, and then go straight line for abs(dx – dy) steps.

Time complexity: O(n)
Space complexity: O(1)

C++