Press "Enter" to skip to content

Posts published in “Stack”

花花酱 LeetCode 1381. Design a Stack With Increment Operation

Design a stack which supports the following operations.

Implement the CustomStack class:

  • CustomStack(int maxSize) Initializes the object with maxSize which is the maximum number of elements in the stack or do nothing if the stack reached the maxSize.
  • void push(int x) Adds x to the top of the stack if the stack hasn’t reached the maxSize.
  • int pop() Pops and returns the top of stack or -1 if the stack is empty.
  • void inc(int k, int val) Increments the bottom k elements of the stack by val. If there are less than k elements in the stack, just increment all the elements in the stack.

Example 1:

Input
["CustomStack","push","push","pop","push","push","push","increment","increment","pop","pop","pop","pop"]
[[3],[1],[2],[],[2],[3],[4],[5,100],[2,100],[],[],[],[]]
Output
[null,null,null,2,null,null,null,null,null,103,202,201,-1]
Explanation
CustomStack customStack = new CustomStack(3); // Stack is Empty []
customStack.push(1);                          // stack becomes [1]
customStack.push(2);                          // stack becomes [1, 2]
customStack.pop();                            // return 2 --> Return top of the stack 2, stack becomes [1]
customStack.push(2);                          // stack becomes [1, 2]
customStack.push(3);                          // stack becomes [1, 2, 3]
customStack.push(4);                          // stack still [1, 2, 3], Don't add another elements as size is 4
customStack.increment(5, 100);                // stack becomes [101, 102, 103]
customStack.increment(2, 100);                // stack becomes [201, 202, 103]
customStack.pop();                            // return 103 --> Return top of the stack 103, stack becomes [201, 202]
customStack.pop();                            // return 202 --> Return top of the stack 102, stack becomes [201]
customStack.pop();                            // return 201 --> Return top of the stack 101, stack becomes []
customStack.pop();                            // return -1 --> Stack is empty return -1.

Solution: Simulation

Time complexity:
init: O(1)
pop: O(1)
push: O(1)
inc: O(k)

C++

花花酱 LeetCode 227. Basic Calculator II

Implement a basic calculator to evaluate a simple expression string.

The expression string contains only non-negative integers, +-*/ operators and empty spaces . The integer division should truncate toward zero.

Example 1:

Input: "3+2*2"
Output: 7

Example 2:

Input: " 3/2 "
Output: 1

Example 3:

Input: " 3+5 / 2 "
Output: 5

Note:

  • You may assume that the given expression is always valid.
  • Do not use the eval built-in library function.

Solution: Stack

if operator is ‘+’ or ‘-’, push the current num * sign onto stack.
if operator ‘*’ or ‘/’, pop the last num from stack and * or / by the current num and push it back to stack.

The answer is the sum of numbers on stack.

3+2*2 => {3}, {3,2}, {3, 2*2} = {3, 4} => ans = 7
3 +5/2 => {3}, {3,5}, {3, 5/2} = {3, 2} => ans = 5
1 + 2*3 – 5 => {1}, {1,2}, {1,2*3} = {1,6}, {1, 6, -5} => ans = 2

Time complexity: O(n)
Space complexity: O(n)

C++

python3

Related Problems

花花酱 LeetCode 84. Largest Rectangle in Histogram

Given n non-negative integers representing the histogram’s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.


Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].


The largest rectangle is shown in the shaded area, which has area = 10 unit.

Example:

Input: [2,1,5,6,2,3]
Output: 10

Solution 1: Monotonic Stack

Use a monotonic stack to maintain the higher bars’s indices in ascending order.
When encounter a lower bar, pop the tallest bar and use it as the bottleneck to compute the area.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 71. Simplify Path

Given an absolute path for a file (Unix-style), simplify it. Or in other words, convert it to the canonical path.

In a UNIX-style file system, a period . refers to the current directory. Furthermore, a double period .. moves the directory up a level. For more information, see: Absolute path vs relative path in Linux/Unix

Note that the returned canonical path must always begin with a slash /, and there must be only a single slash / between two directory names. The last directory name (if it exists) must not end with a trailing /. Also, the canonical path must be the shortest string representing the absolute path.

Example 1:

Input: "/home/"
Output: "/home"
Explanation: Note that there is no trailing slash after the last directory name.

Example 2:

Input: "/../"
Output: "/"
Explanation: Going one level up from the root directory is a no-op, as the root level is the highest level you can go.

Example 3:

Input: "/home//foo/"
Output: "/home/foo"
Explanation: In the canonical path, multiple consecutive slashes are replaced by a single one.

Example 4:

Input: "/a/./b/../../c/"
Output: "/c"

Example 5:

Input: "/a/../../b/../c//.//"
Output: "/c"

Example 6:

Input: "/a//b////c/d//././/.."
Output: "/a/b/c"

Solution: Stack

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1209. Remove All Adjacent Duplicates in String II

Given a string s, a k duplicate removal consists of choosing k adjacent and equal letters from s and removing them causing the left and the right side of the deleted substring to concatenate together.

We repeatedly make k duplicate removals on s until we no longer can.

Return the final string after all such duplicate removals have been made.

It is guaranteed that the answer is unique.

Example 1:

Input: s = "abcd", k = 2
Output: "abcd"
Explanation: There's nothing to delete.

Example 2:

Input: s = "deeedbbcccbdaa", k = 3
Output: "aa"
Explanation: 
First delete "eee" and "ccc", get "ddbbbdaa"
Then delete "bbb", get "dddaa"
Finally delete "ddd", get "aa"

Example 3:

Input: s = "pbbcggttciiippooaais", k = 2
Output: "ps"

Constraints:

  • 1 <= s.length <= 10^5
  • 2 <= k <= 10^4
  • s only contains lower case English letters.

Solution: Stack

Time complexity: O(n)
Space complexity: O(n)

C++