Press "Enter" to skip to content

Posts published in “Stack”

花花酱 LeetCode 1776. Car Fleet II

There are n cars traveling at different speeds in the same direction along a one-lane road. You are given an array cars of length n, where cars[i] = [positioni, speedi] represents:

  • positioni is the distance between the ith car and the beginning of the road in meters. It is guaranteed that positioni < positioni+1.
  • speedi is the initial speed of the ith car in meters per second.

For simplicity, cars can be considered as points moving along the number line. Two cars collide when they occupy the same position. Once a car collides with another car, they unite and form a single car fleet. The cars in the formed fleet will have the same position and the same speed, which is the initial speed of the slowest car in the fleet.

Return an array answer, where answer[i] is the time, in seconds, at which the ith car collides with the next car, or -1 if the car does not collide with the next car. Answers within 10-5 of the actual answers are accepted.

Example 1:

Input: cars = [[1,2],[2,1],[4,3],[7,2]]
Output: [1.00000,-1.00000,3.00000,-1.00000]
Explanation: After exactly one second, the first car will collide with the second car, and form a car fleet with speed 1 m/s. After exactly 3 seconds, the third car will collide with the fourth car, and form a car fleet with speed 2 m/s.

Example 2:

Input: cars = [[3,4],[5,4],[6,3],[9,1]]
Output: [2.00000,1.00000,1.50000,-1.00000]

Constraints:

  • 1 <= cars.length <= 105
  • 1 <= positioni, speedi <= 106
  • positioni < positioni+1

Solution: Monotonic Stack

Key observation: If my speed is slower than the speed of the previous car, not only mine but also all cars behind me will NEVER be able to catch/collide with the previous car. Such that we can throw it away.

Maintain a stack that stores the indices of cars with increasing speed.

Process car from right to left, for each car, pop the stack (throw the fastest car away) if any of the following conditions hold.
1) speed <= stack.top().speed
2) There are more than one car before me and it takes more than to collide the fastest car than time the fastest took to collide.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1614. Maximum Nesting Depth of the Parentheses

A string is a valid parentheses string (denoted VPS) if it meets one of the following:

  • It is an empty string "", or a single character not equal to "(" or ")",
  • It can be written as AB (A concatenated with B), where A and B are VPS‘s, or
  • It can be written as (A), where A is a VPS.

We can similarly define the nesting depth depth(S) of any VPS S as follows:

  • depth("") = 0
  • depth(A + B) = max(depth(A), depth(B)), where A and B are VPS‘s
  • depth("(" + A + ")") = 1 + depth(A), where A is a VPS.

For example, """()()", and "()(()())" are VPS‘s (with nesting depths 0, 1, and 2), and ")(" and "(()" are not VPS‘s.

Given a VPS represented as string s, return the nesting depth of s.

Example 1:

Input: s = "(1+(2*3)+((8)/4))+1"
Output: 3
Explanation: Digit 8 is inside of 3 nested parentheses in the string.

Example 2:

Input: s = "(1)+((2))+(((3)))"
Output: 3

Example 3:

Input: s = "1+(2*3)/(2-1)"
Output: 1

Example 4:

Input: s = "1"
Output: 0

Constraints:

  • 1 <= s.length <= 100
  • s consists of digits 0-9 and characters '+''-''*''/''(', and ')'.
  • It is guaranteed that parentheses expression s is a VPS.

Solution: Stack

We only need to deal with ‘(‘ and ‘)’

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1544. Make The String Great

Given a string s of lower and upper case English letters.

A good string is a string which doesn’t have two adjacent characters s[i] and s[i + 1] where:

  • 0 <= i <= s.length - 2
  • s[i] is a lower-case letter and s[i + 1] is the same letter but in upper-case or vice-versa.

To make the string good, you can choose two adjacent characters that make the string bad and remove them. You can keep doing this until the string becomes good.

Return the string after making it good. The answer is guaranteed to be unique under the given constraints.

Notice that an empty string is also good.

Example 1:

Input: s = "leEeetcode"
Output: "leetcode"
Explanation: In the first step, either you choose i = 1 or i = 2, both will result "leEeetcode" to be reduced to "leetcode".

Example 2:

Input: s = "abBAcC"
Output: ""
Explanation: We have many possible scenarios, and all lead to the same answer. For example:
"abBAcC" --> "aAcC" --> "cC" --> ""
"abBAcC" --> "abBA" --> "aA" --> ""

Example 3:

Input: s = "s"
Output: "s"

Constraints:

  • 1 <= s.length <= 100
  • s contains only lower and upper case English letters.

Solution: Stack

Iterator over the string, compare current char with top of the stack, if they are a bad pair, pop the stack (remove both of them). Otherwise, push the current char onto the stack.

input: “abBAcC”
“a”
“ab”
“abB” -> “a”
aA” -> “”
“c”
cC” -> “”
ans = “”

Time complexity: O(n)
Space complexity: O(n)

C++

Java

Python3

花花酱 LeetCode 1475. Final Prices With a Special Discount in a Shop

Given the array prices where prices[i] is the price of the ith item in a shop. There is a special discount for items in the shop, if you buy the ith item, then you will receive a discount equivalent to prices[j] where j is the minimum index such that j > i and prices[j] <= prices[i], otherwise, you will not receive any discount at all.

Return an array where the ith element is the final price you will pay for the ith item of the shop considering the special discount.

Example 1:

Input: prices = [8,4,6,2,3]
Output: [4,2,4,2,3]
Explanation: 
For item 0 with price[0]=8 you will receive a discount equivalent to prices[1]=4, therefore, the final price you will pay is 8 - 4 = 4. 
For item 1 with price[1]=4 you will receive a discount equivalent to prices[3]=2, therefore, the final price you will pay is 4 - 2 = 2. 
For item 2 with price[2]=6 you will receive a discount equivalent to prices[3]=2, therefore, the final price you will pay is 6 - 2 = 4. 
For items 3 and 4 you will not receive any discount at all.

Example 2:

Input: prices = [1,2,3,4,5]
Output: [1,2,3,4,5]
Explanation: In this case, for all items, you will not receive any discount at all.

Example 3:

Input: prices = [10,1,1,6]
Output: [9,0,1,6]

Constraints:

  • 1 <= prices.length <= 500
  • 1 <= prices[i] <= 10^3

Solution 1: Simulation

Time complexity: O(n^2)
Space complexity: O(1)

C++

Solution 2: Monotonic Stack

Use a stack to store monotonically increasing items, when the current item is cheaper than the top of the stack, we get the discount and pop that item. Repeat until the current item is no longer cheaper or the stack becomes empty.

Time complexity: O(n)
Space complexity: O(n)

C++

index version

C++

花花酱 LeetCode 1381. Design a Stack With Increment Operation

Design a stack which supports the following operations.

Implement the CustomStack class:

  • CustomStack(int maxSize) Initializes the object with maxSize which is the maximum number of elements in the stack or do nothing if the stack reached the maxSize.
  • void push(int x) Adds x to the top of the stack if the stack hasn’t reached the maxSize.
  • int pop() Pops and returns the top of stack or -1 if the stack is empty.
  • void inc(int k, int val) Increments the bottom k elements of the stack by val. If there are less than k elements in the stack, just increment all the elements in the stack.

Example 1:

Input
["CustomStack","push","push","pop","push","push","push","increment","increment","pop","pop","pop","pop"]
[[3],[1],[2],[],[2],[3],[4],[5,100],[2,100],[],[],[],[]]
Output
[null,null,null,2,null,null,null,null,null,103,202,201,-1]
Explanation
CustomStack customStack = new CustomStack(3); // Stack is Empty []
customStack.push(1);                          // stack becomes [1]
customStack.push(2);                          // stack becomes [1, 2]
customStack.pop();                            // return 2 --> Return top of the stack 2, stack becomes [1]
customStack.push(2);                          // stack becomes [1, 2]
customStack.push(3);                          // stack becomes [1, 2, 3]
customStack.push(4);                          // stack still [1, 2, 3], Don't add another elements as size is 4
customStack.increment(5, 100);                // stack becomes [101, 102, 103]
customStack.increment(2, 100);                // stack becomes [201, 202, 103]
customStack.pop();                            // return 103 --> Return top of the stack 103, stack becomes [201, 202]
customStack.pop();                            // return 202 --> Return top of the stack 102, stack becomes [201]
customStack.pop();                            // return 201 --> Return top of the stack 101, stack becomes []
customStack.pop();                            // return -1 --> Stack is empty return -1.

Solution: Simulation

Time complexity:
init: O(1)
pop: O(1)
push: O(1)
inc: O(k)

C++