Press "Enter" to skip to content

Posts published in “Stack”

花花酱 LeetCode 1190. Reverse Substrings Between Each Pair of Parentheses

Given a string s that consists of lower case English letters and brackets. 

Reverse the strings in each pair of matching parentheses, starting from the innermost one.

Your result should not contain any bracket.

Example 1:

Input: s = "(abcd)"
Output: "dcba"

Example 2:

Input: s = "(u(love)i)"
Output: "iloveu"

Example 3:

Input: s = "(ed(et(oc))el)"
Output: "leetcode"

Example 4:

Input: s = "a(bcdefghijkl(mno)p)q"
Output: "apmnolkjihgfedcbq"

Constraints:

  • 0 <= s.length <= 2000
  • s only contains lower case English characters and parentheses.
  • It’s guaranteed that all parentheses are balanced.

Solution: Stack

Use a stack of strings to track all the active strings.
Iterate over the input string:
1. Whenever there is a ‘(‘, push an empty string to the stack.
2. Whenever this is a ‘)’, pop the top string and append the reverse of it to the new stack top.
3. Otherwise, append the letter to the string on top the of stack.

Once done, the (only) string on the top of the stack is the answer.

Time complexity: O(n^2)
Space complexity: O(n)

C++

花花酱 LeetCode 1172. Dinner Plate Stacks

You have an infinite number of stacks arranged in a row and numbered (left to right) from 0, each of the stacks has the same maximum capacity.

Implement the DinnerPlates class:

  • DinnerPlates(int capacity) Initializes the object with the maximum capacity of the stacks.
  • void push(int val) pushes the given positive integer val into the leftmost stack with size less than capacity.
  • int pop() returns the value at the top of the rightmost non-empty stack and removes it from that stack, and returns -1 if all stacks are empty.
  • int popAtStack(int index) returns the value at the top of the stack with the given index and removes it from that stack, and returns -1 if the stack with that given index is empty.

Example:

Input: 
["DinnerPlates","push","push","push","push","push","popAtStack","push","push","popAtStack","popAtStack","pop","pop","pop","pop","pop"]
[[2],[1],[2],[3],[4],[5],[0],[20],[21],[0],[2],[],[],[],[],[]]
Output: 

[null,null,null,null,null,null,2,null,null,20,21,5,4,3,1,-1]

Explanation: DinnerPlates D = DinnerPlates(2); // Initialize with capacity = 2 D.push(1); D.push(2); D.push(3); D.push(4); D.push(5); // The stacks are now: 2  4   1  3  5 ﹈ ﹈ ﹈ D.popAtStack(0); // Returns 2. The stacks are now:  4   1  3  5 ﹈ ﹈ ﹈ D.push(20); // The stacks are now: 20 4   1  3  5 ﹈ ﹈ ﹈ D.push(21); // The stacks are now: 20 4 21   1  3  5 ﹈ ﹈ ﹈ D.popAtStack(0); // Returns 20. The stacks are now: 4 21   1  3  5 ﹈ ﹈ ﹈ D.popAtStack(2); // Returns 21. The stacks are now: 4   1  3  5 ﹈ ﹈ ﹈ D.pop() // Returns 5. The stacks are now: 4   1  3 ﹈ ﹈ D.pop() // Returns 4. The stacks are now: 1  3 ﹈ ﹈ D.pop() // Returns 3. The stacks are now: 1 ﹈ D.pop() // Returns 1. There are no stacks. D.pop() // Returns -1. There are still no stacks.

Constraints:

  • 1 <= capacity <= 20000
  • 1 <= val <= 20000
  • 0 <= index <= 100000
  • At most 200000 calls will be made to pushpop, and popAtStack.

Solution: Array of stacks + TreeSet

Store all the stacks in an array, and store the indices of all free stacks in a tree set.
1. push(): find the first free stack and push onto it, if it becomes full, remove it from free set.
2. pop(): pop element from the last stack by calling popAtIndex(stacks.size()-1).
3. popAtIndex(): pop element from given index
3.1 add it to free set if it was full
3.2 remove it from free set if it becomes empty
3.2.1 remove it from stack array if it is the last stack

Time complexity:
Push: O(logn)
Pop: O(logn)
PopAtIndex: O(logn)

Space complexity: O(n)

C++

花花酱 LeetCode 232. Implement Queue using Stacks

Implement the following operations of a queue using stacks.

  • push(x) — Push element x to the back of queue.
  • pop() — Removes the element from in front of queue.
  • peek() — Get the front element.
  • empty() — Return whether the queue is empty.

Example:

MyQueue queue = new MyQueue();

queue.push(1);
queue.push(2);  
queue.peek();  // returns 1
queue.pop();   // returns 1
queue.empty(); // returns false

Notes:

  • You must use only standard operations of a stack — which means only push to toppeek/pop from topsize, and is empty operations are valid.
  • Depending on your language, stack may not be supported natively. You may simulate a stack by using a list or deque (double-ended queue), as long as you use only standard operations of a stack.
  • You may assume that all operations are valid (for example, no pop or peek operations will be called on an empty queue).

Solution: Use two stacks

amortized cost: O(1)

C++

花花酱 LeetCode 150. Evaluate Reverse Polish Notation

Evaluate the value of an arithmetic expression in Reverse Polish Notation.

Valid operators are +-*/. Each operand may be an integer or another expression.

Note:

  • Division between two integers should truncate toward zero.
  • The given RPN expression is always valid. That means the expression would always evaluate to a result and there won’t be any divide by zero operation.

Example 1:

Input: ["2", "1", "+", "3", "*"]
Output: 9
Explanation: ((2 + 1) * 3) = 9

Example 2:

Input: ["4", "13", "5", "/", "+"]
Output: 6
Explanation: (4 + (13 / 5)) = 6

Example 3:

Input: ["10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"]
Output: 22
Explanation: 
  ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

Solution: Stack

Use a stack to store the operands, pop two whenever there is an operator, compute the result and push back to the stack.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 962. Maximum Width Ramp

Given an array A of integers, a ramp is a tuple (i, j) for which i < j and A[i] <= A[j].  The width of such a ramp is j - i.

Find the maximum width of a ramp in A.  If one doesn’t exist, return 0.

Example 1:

Input: [6,0,8,2,1,5] 
Output: 4
Explanation: The maximum width ramp is achieved at (i, j) = (1, 5): A[1] = 0 and A[5] = 5.

Example 2:

Input: [9,8,1,0,1,9,4,0,4,1] 
Output: 7
Explanation: The maximum width ramp is achieved at (i, j) = (2, 9): A[2] = 1 and A[9] = 1.

Note:

  1. 2 <= A.length <= 50000
  2. 0 <= A[i] <= 50000

Solution: Stack

  1. Using a stack to store start candidates’ (decreasing order) index
  2. Scan from right to left, compare the current number with the one on the top of the stack, pop if greater.

e.g.
A = [6,0,8,2,1,5]
stack = [0, 1] => [6, 0]
cur: A[5] = 5, stack.top = A[1] = 0, ramp = 5, stack.pop()
cur: A[4] = 1, stack.top = A[0] = 6
cur: A[3] = 2, stack.top = A[0] = 6
cur: A[2] = 8, stack.top = A[0] = 6, ramp = 2, stack.pop()
stack.isEmpty() => END

C++

Python3