Press "Enter" to skip to content

Posts tagged as “dp”

花花酱 LeetCode 2560. House Robber IV

There are several consecutive houses along a street, each of which has some money inside. There is also a robber, who wants to steal money from the homes, but he refuses to steal from adjacent homes.

The capability of the robber is the maximum amount of money he steals from one house of all the houses he robbed.

You are given an integer array nums representing how much money is stashed in each house. More formally, the ith house from the left has nums[i] dollars.

You are also given an integer k, representing the minimum number of houses the robber will steal from. It is always possible to steal at least k houses.

Return the minimum capability of the robber out of all the possible ways to steal at least k houses.

Example 1:

Input: nums = [2,3,5,9], k = 2
Output: 5
Explanation: 
There are three ways to rob at least 2 houses:
- Rob the houses at indices 0 and 2. Capability is max(nums[0], nums[2]) = 5.
- Rob the houses at indices 0 and 3. Capability is max(nums[0], nums[3]) = 9.
- Rob the houses at indices 1 and 3. Capability is max(nums[1], nums[3]) = 9.
Therefore, we return min(5, 9, 9) = 5.

Example 2:

Input: nums = [2,7,9,3,1], k = 2
Output: 2
Explanation: There are 7 ways to rob the houses. The way which leads to minimum capability is to rob the house at index 0 and 4. Return max(nums[0], nums[4]) = 2.

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 109
  • 1 <= k <= (nums.length + 1)/2

Solution 1: Binary Search + DP

It’s easy to see that higher capability means more houses we can rob. Thus this can be formulate as a binary search algorithm e.g. find the minimum C s.t. we can rob at least k houses.

Then we can use dp(i) to calculate maximum houses we can rob if starting from the i’th house.
dp(i) = max(1 + dp(i + 2) if nums[i] <= C else 0, dp(i + 1))

Time complexity: O(n log m)
Space complexity: O(n)

C++

Solution 2: Binary Search + Greedy

From: dp(i) = max(1 + dp(i + 2) if nums[i] <= C else 0, dp(i + 1)) we can see that if we can pick the i-th one, it will be the same or better if we skip and start from dp(i + 1). Thus we can convert this from DP to greedy. As long as we can pick the current one, we pick it first.

Time complexity: O(n log m)
Space complexity: O(1)

C++

花花酱 LeetCode 2435. Paths in Matrix Whose Sum Is Divisible by K

You are given a 0-indexed m x n integer matrix grid and an integer k. You are currently at position (0, 0) and you want to reach position (m - 1, n - 1) moving only down or right.

Return the number of paths where the sum of the elements on the path is divisible by k. Since the answer may be very large, return it modulo 109 + 7.

Example 1:

Input: grid = [[5,2,4],[3,0,5],[0,7,2]], k = 3
Output: 2
Explanation: There are two paths where the sum of the elements on the path is divisible by k.
The first path highlighted in red has a sum of 5 + 2 + 4 + 5 + 2 = 18 which is divisible by 3.
The second path highlighted in blue has a sum of 5 + 3 + 0 + 5 + 2 = 15 which is divisible by 3.

Example 2:

Input: grid = [[0,0]], k = 5
Output: 1
Explanation: The path highlighted in red has a sum of 0 + 0 = 0 which is divisible by 5.

Example 3:

Input: grid = [[7,3,4,9],[2,3,6,2],[2,3,7,0]], k = 1
Output: 10
Explanation: Every integer is divisible by 1 so the sum of the elements on every possible path is divisible by k.

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 5 * 104
  • 1 <= m * n <= 5 * 104
  • 0 <= grid[i][j] <= 100
  • 1 <= k <= 50

Solution: DP

Let dp[i][j][r] := # of paths from (0,0) to (i,j) with path sum % k == r.

init: dp[0][0][grid[0][0] % k] = 1

dp[i][j][(r + grid[i][j]) % k] = dp[i-1][j][r] + dp[i][j-1][r]

ans = dp[m-1][n-1][0]

Time complexity: O(m*n*k)
Space complexity: O(m*n*k) -> O(n*k)

C++

Related Problems:

花花酱 LeetCode 2420. Find All Good Indices

You are given a 0-indexed integer array nums of size n and a positive integer k.

We call an index i in the range k <= i < n - k good if the following conditions are satisfied:

  • The k elements that are just before the index i are in non-increasing order.
  • The k elements that are just after the index i are in non-decreasing order.

Return an array of all good indices sorted in increasing order.

Example 1:

Input: nums = [2,1,1,1,3,4,1], k = 2
Output: [2,3]
Explanation: There are two good indices in the array:
- Index 2. The subarray [2,1] is in non-increasing order, and the subarray [1,3] is in non-decreasing order.
- Index 3. The subarray [1,1] is in non-increasing order, and the subarray [3,4] is in non-decreasing order.
Note that the index 4 is not good because [4,1] is not non-decreasing.

Example 2:

Input: nums = [2,1,1,2], k = 2
Output: []
Explanation: There are no good indices in this array.

Constraints:

  • n == nums.length
  • 3 <= n <= 105
  • 1 <= nums[i] <= 106
  • 1 <= k <= n / 2

Solution: Prefix Sum

Let before[i] = length of longest non-increasing subarray ends of nums[i].
Let after[i] = length of longest non-decreasing subarray ends of nums[i].

An index is good if nums[i – 1] >= k and nums[i + k] >= k

Time complexity: O(n + (n – 2*k))
Space complexity: O(n)

C++

花花酱 LeetCode 2407. Longest Increasing Subsequence II

You are given an integer array nums and an integer k.

Find the longest subsequence of nums that meets the following requirements:

  • The subsequence is strictly increasing and
  • The difference between adjacent elements in the subsequence is at most k.

Return the length of the longest subsequence that meets the requirements.

subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.

Example 1:

Input: nums = [4,2,1,4,3,4,5,8,15], k = 3
Output: 5
Explanation:
The longest subsequence that meets the requirements is [1,3,4,5,8].
The subsequence has a length of 5, so we return 5.
Note that the subsequence [1,3,4,5,8,15] does not meet the requirements because 15 - 8 = 7 is larger than 3.

Example 2:

Input: nums = [7,4,5,1,8,12,4,7], k = 5
Output: 4
Explanation:
The longest subsequence that meets the requirements is [4,5,8,12].
The subsequence has a length of 4, so we return 4.

Example 3:

Input: nums = [1,5], k = 1
Output: 1
Explanation:
The longest subsequence that meets the requirements is [1].
The subsequence has a length of 1, so we return 1.

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i], k <= 105

Solution: DP + Segment Tree | Max range query

Let dp[i] := length of LIS end with number i.
dp[i] = 1 + max(dp[i-k:i])

Naive dp takes O(n*k) time which will cause TLE.

We can use segment tree to speed up the max range query to log(m), where m is the max value of the array.

Time complexity: O(n*logm)
Space complexity: O(m)

C++

花花酱 LeetCode 2304. Minimum Path Cost in a Grid

You are given a 0-indexed m x n integer matrix grid consisting of distinct integers from 0 to m * n - 1. You can move in this matrix from a cell to any other cell in the next row. That is, if you are in cell (x, y) such that x < m - 1, you can move to any of the cells (x + 1, 0)(x + 1, 1), …, (x + 1, n - 1)Note that it is not possible to move from cells in the last row.

Each possible move has a cost given by a 0-indexed 2D array moveCost of size (m * n) x n, where moveCost[i][j] is the cost of moving from a cell with value i to a cell in column j of the next row. The cost of moving from cells in the last row of grid can be ignored.

The cost of a path in grid is the sum of all values of cells visited plus the sum of costs of all the moves made. Return the minimum cost of a path that starts from any cell in the first row and ends at any cell in the last row.

Example 1:

Input: grid = [[5,3],[4,0],[2,1]], moveCost = [[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]
Output: 17
Explanation: The path with the minimum possible cost is the path 5 -> 0 -> 1.
- The sum of the values of cells visited is 5 + 0 + 1 = 6.
- The cost of moving from 5 to 0 is 3.
- The cost of moving from 0 to 1 is 8.
So the total cost of the path is 6 + 3 + 8 = 17.

Example 2:

Input: grid = [[5,1,2],[4,0,3]], moveCost = [[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]
Output: 6
Explanation: The path with the minimum possible cost is the path 2 -> 3.
- The sum of the values of cells visited is 2 + 3 = 5.
- The cost of moving from 2 to 3 is 1.
So the total cost of this path is 5 + 1 = 6.

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 2 <= m, n <= 50
  • grid consists of distinct integers from 0 to m * n - 1.
  • moveCost.length == m * n
  • moveCost[i].length == n
  • 1 <= moveCost[i][j] <= 100

Solution: DP

Let dp[i][j] := min cost to reach grid[i][j] from the first row.

dp[i][j] = min{grid[i][j] + dp[i – 1][k] + moveCost[grid[i – 1][k]][j]} 0 <= k < n

For each node, try all possible nodes from the previous row.

Time complexity: O(m*n2)
Space complexity: O(m*n) -> O(n)

C++