Press "Enter" to skip to content

Posts tagged as “dp”

花花酱 LeetCode 1575. Count All Possible Routes

You are given an array of distinct positive integers locations where locations[i] represents the position of city i. You are also given integers startfinish and fuel representing the starting city, ending city, and the initial amount of fuel you have, respectively.

At each step, if you are at city i, you can pick any city j such that j != i and 0 <= j < locations.length and move to city j. Moving from city i to city j reduces the amount of fuel you have by |locations[i] - locations[j]|. Please notice that |x| denotes the absolute value of x.

Notice that fuel cannot become negative at any point in time, and that you are allowed to visit any city more than once (including start and finish).

Return the count of all possible routes from start to finish.

Since the answer may be too large, return it modulo 10^9 + 7.

Example 1:

Input: locations = [2,3,6,8,4], start = 1, finish = 3, fuel = 5
Output: 4
Explanation: The following are all possible routes, each uses 5 units of fuel:
1 -> 3
1 -> 2 -> 3
1 -> 4 -> 3
1 -> 4 -> 2 -> 3

Example 2:

Input: locations = [4,3,1], start = 1, finish = 0, fuel = 6
Output: 5
Explanation: The following are all possible routes:
1 -> 0, used fuel = 1
1 -> 2 -> 0, used fuel = 5
1 -> 2 -> 1 -> 0, used fuel = 5
1 -> 0 -> 1 -> 0, used fuel = 3
1 -> 0 -> 1 -> 0 -> 1 -> 0, used fuel = 5

Example 3:

Input: locations = [5,2,1], start = 0, finish = 2, fuel = 3
Output: 0
Explanation: It's impossible to get from 0 to 2 using only 3 units of fuel since the shortest route needs 4 units of fuel.

Example 4:

Input: locations = [2,1,5], start = 0, finish = 0, fuel = 3
Output: 2
Explanation: There are two possible routes, 0 and 0 -> 1 -> 0.

Example 5:

Input: locations = [1,2,3], start = 0, finish = 2, fuel = 40
Output: 615088286
Explanation: The total number of possible routes is 2615088300. Taking this number modulo 10^9 + 7 gives us 615088286.

Constraints:

  • 2 <= locations.length <= 100
  • 1 <= locations[i] <= 10^9
  • All integers in locations are distinct.
  • 0 <= start, finish < locations.length
  • 1 <= fuel <= 200

Solution: DP

dp[j][f] := # of ways to start from city ‘start’ to reach city ‘j’ with fuel level f.

dp[j][f] = sum(dp[i][f + d]) d = dist(i, j)

init: dp[start][fuel] = 1

Time complexity: O(n^2*fuel)
Space complexity: O(n*fuel)

C++

Python3

花花酱 LeetCode 1567. Maximum Length of Subarray With Positive Product

Given an array of integers nums, find the maximum length of a subarray where the product of all its elements is positive.

A subarray of an array is a consecutive sequence of zero or more values taken out of that array.

Return the maximum length of a subarray with positive product.

Example 1:

Input: nums = [1,-2,-3,4]
Output: 4
Explanation: The array nums already has a positive product of 24.

Example 2:

Input: nums = [0,1,-2,-3,-4]
Output: 3
Explanation: The longest subarray with positive product is [1,-2,-3] which has a product of 6.
Notice that we cannot include 0 in the subarray since that'll make the product 0 which is not positive.

Example 3:

Input: nums = [-1,-2,-3,0,1]
Output: 2
Explanation: The longest subarray with positive product is [-1,-2] or [-2,-3].

Example 4:

Input: nums = [-1,2]
Output: 1

Example 5:

Input: nums = [1,2,3,5,-6,4,0,10]
Output: 4

Constraints:

  • 1 <= nums.length <= 10^5
  • -10^9 <= nums[i] <= 10^9

Solution: DP

p[i] := max length of positive products ends with arr[i]
n[i] := max length of negtive products ends with arr[i]

if arr[i] > 0: p[i] = p[i – 1] + 1, n[i] = n[i] + 1 if n[i] else 0
if arr[i] < 0: p[i] = n[i – 1] + 1 if n[i – 1] else 0, n[i] = p[i – 1] + 1
if arr[i] == 0: p[i] = n[i] = 0
ans = max(p[i])

Time complexity: O(n)
Space complexity: O(n) -> O(1)

C++

花花酱 LeetCode 1563. Stone Game V

There are several stones arranged in a row, and each stone has an associated value which is an integer given in the array stoneValue.

In each round of the game, Alice divides the row into two non-empty rows (i.e. left row and right row), then Bob calculates the value of each row which is the sum of the values of all the stones in this row. Bob throws away the row which has the maximum value, and Alice’s score increases by the value of the remaining row. If the value of the two rows are equal, Bob lets Alice decide which row will be thrown away. The next round starts with the remaining row.

The game ends when there is only one stone remaining. Alice’s is initially zero.

Return the maximum score that Alice can obtain.

Example 1:

Input: stoneValue = [6,2,3,4,5,5]
Output: 18
Explanation: In the first round, Alice divides the row to [6,2,3], [4,5,5]. The left row has the value 11 and the right row has value 14. Bob throws away the right row and Alice's score is now 11.
In the second round Alice divides the row to [6], [2,3]. This time Bob throws away the left row and Alice's score becomes 16 (11 + 5).
The last round Alice has only one choice to divide the row which is [2], [3]. Bob throws away the right row and Alice's score is now 18 (16 + 2). The game ends because only one stone is remaining in the row.

Example 2:

Input: stoneValue = [7,7,7,7,7,7,7]
Output: 28

Example 3:

Input: stoneValue = [4]
Output: 0

Constraints:

  • 1 <= stoneValue.length <= 500
  • 1 <= stoneValue[i] <= 10^6

Solution: Range DP + Prefix Sum

dp[l][r] := max store Alice can get from range [l, r]
sum_l = sum(l, k), sum_r = sum(k + 1, r)
dp[l][r] = max{
dp[l][k] + sum_l if sum_l < sum_r
dp[k+1][r] + sum_r if sum_r < sum_l
max(dp[l][k], dp[k+1][r])) + sum_l if sum_l == sum_r)
} for k in [l, r)

Time complexity: O(n^3)
Space complexity: O(n^2)

C++

花花酱 LeetCode 1553. Minimum Number of Days to Eat N Oranges

There are n oranges in the kitchen and you decided to eat some of these oranges every day as follows:

  • Eat one orange.
  • If the number of remaining oranges (n) is divisible by 2 then you can eat  n/2 oranges.
  • If the number of remaining oranges (n) is divisible by 3 then you can eat  2*(n/3) oranges.

You can only choose one of the actions per day.

Return the minimum number of days to eat n oranges.

Example 1:

Input: n = 10
Output: 4
Explanation: You have 10 oranges.
Day 1: Eat 1 orange,  10 - 1 = 9.  
Day 2: Eat 6 oranges, 9 - 2*(9/3) = 9 - 6 = 3. (Since 9 is divisible by 3)
Day 3: Eat 2 oranges, 3 - 2*(3/3) = 3 - 2 = 1. 
Day 4: Eat the last orange  1 - 1  = 0.
You need at least 4 days to eat the 10 oranges.

Example 2:

Input: n = 6
Output: 3
Explanation: You have 6 oranges.
Day 1: Eat 3 oranges, 6 - 6/2 = 6 - 3 = 3. (Since 6 is divisible by 2).
Day 2: Eat 2 oranges, 3 - 2*(3/3) = 3 - 2 = 1. (Since 3 is divisible by 3)
Day 3: Eat the last orange  1 - 1  = 0.
You need at least 3 days to eat the 6 oranges.

Example 3:

Input: n = 1
Output: 1

Example 4:

Input: n = 56
Output: 6

Constraints:

  • 1 <= n <= 2*10^9

Solution: Greedy + DP

Eat oranges one by one to make it a multiply of 2 or 3 such that we can eat 50% or 66.66…% of the oranges in one step.
dp(n) := min steps to finish n oranges.
base case n <= 1, dp(n) = n
transition: dp(n) = 1 + min(n%2 + dp(n/2), n % 3 + dp(n / 3))
e.g. n = 11,
we eat 11%2 = 1 in one step, left = 10 and then eat 10 / 2 = 5 in another step. 5 left for the subproblem.
we eat 11%3 = 2 in two steps, left = 9 and then eat 9 * 2 / 3 = 6 in another step, 3 left for the subproblem.
dp(11) = 1 + min(1 + dp(5), 2 + dp(3))

T(n) = 2*T(n/2) + O(1) = O(n)
Time complexity: O(n) // w/o memoization, close to O(logn) in practice.
Space complexity: O(logn)

C++

Java

Python3

Solution 2: BFS

if x % 2 == 0, push x/2 onto the queue
if x % 3 == 0, push x/3 onto the queue
always push x – 1 onto the queue

C++

花花酱 LeetCode 1546. Maximum Number of Non-Overlapping Subarrays With Sum Equals Target

Given an array nums and an integer target.

Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.

Example 1:

Input: nums = [1,1,1,1,1], target = 2
Output: 2
Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2).

Example 2:

Input: nums = [-1,3,5,1,4,2,-9], target = 6
Output: 2
Explanation: There are 3 subarrays with sum equal to 6.
([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping.

Example 3:

Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10
Output: 3

Example 4:

Input: nums = [0,0,0], target = 0
Output: 3

Constraints:

  • 1 <= nums.length <= 10^5
  • -10^4 <= nums[i] <= 10^4
  • 0 <= target <= 10^6

Solution: Prefix Sum + DP

Use a hashmap index to record the last index when a given prefix sum occurs.
dp[i] := max # of non-overlapping subarrays of nums[0~i], nums[i] is not required to be included.
dp[i+1] = max(dp[i], // skip nums[i]
dp[index[sum – target] + 1] + 1) // use nums[i] to form a new subarray
ans = dp[n]

Time complexity: O(n)
Space complexity: O(n)

C++