Press "Enter" to skip to content

Posts published in “Algorithms”

花花酱 LeetCode 1929. Concatenation of Array

Given an integer array nums of length n, you want to create an array ans of length 2n where ans[i] == nums[i] and ans[i + n] == nums[i] for 0 <= i < n (0-indexed).

Specifically, ans is the concatenation of two nums arrays.

Return the array ans.

Example 1:

Input: nums = [1,2,1]
Output: [1,2,1,1,2,1]
Explanation: The array ans is formed as follows:
- ans = [nums[0],nums[1],nums[2],nums[0],nums[1],nums[2]]
- ans = [1,2,1,1,2,1]

Example 2:

Input: nums = [1,3,2,1]
Output: [1,3,2,1,1,3,2,1]
Explanation: The array ans is formed as follows:
- ans = [nums[0],nums[1],nums[2],nums[3],nums[0],nums[1],nums[2],nums[3]]
- ans = [1,3,2,1,1,3,2,1]

Constraints:

  • n == nums.length
  • 1 <= n <= 1000
  • 1 <= nums[i] <= 1000

Solution: Pre-allocation

Pre-allocate an array of length 2 * n.
ans[i] = nums[i % n]

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1920. Build Array from Permutation

Given a zero-based permutation nums (0-indexed), build an array ans of the same length where ans[i] = nums[nums[i]] for each 0 <= i < nums.length and return it.

zero-based permutation nums is an array of distinct integers from 0 to nums.length - 1 (inclusive).

Example 1:

Input: nums = [0,2,1,5,3,4]
Output: [0,1,2,4,5,3]
Explanation: The array ans is built as follows: 
ans = [nums[nums[0]], nums[nums[1]], nums[nums[2]], nums[nums[3]], nums[nums[4]], nums[nums[5]]]
    = [nums[0], nums[2], nums[1], nums[5], nums[3], nums[4]]
    = [0,1,2,4,5,3]

Example 2:

Input: nums = [5,0,1,2,3,4]
Output: [4,5,0,1,2,3]
Explanation: The array ans is built as follows:
ans = [nums[nums[0]], nums[nums[1]], nums[nums[2]], nums[nums[3]], nums[nums[4]], nums[nums[5]]]
    = [nums[5], nums[0], nums[1], nums[2], nums[3], nums[4]]
    = [4,5,0,1,2,3]

Constraints:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] < nums.length
  • The elements in nums are distinct.

Follow-up: Can you solve it without using an extra space (i.e., O(1) memory)?

Solution 1: Straight forward

Time complexity: O(n)
Space complexity: O(n)

C++

Solution 2: Follow up: Inplace Encoding

Since nums[i] <= 1000, we can use low 16 bit to store the original value and high 16 bit for new value.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1909. Remove One Element to Make the Array Strictly Increasing

Given a 0-indexed integer array nums, return true if it can be made strictly increasing after removing exactly one element, or false otherwise. If the array is already strictly increasing, return true.

The array nums is strictly increasing if nums[i - 1] < nums[i] for each index (1 <= i < nums.length).

Example 1:

Input: nums = [1,2,10,5,7]
Output: true
Explanation: By removing 10 at index 2 from nums, it becomes [1,2,5,7].
[1,2,5,7] is strictly increasing, so return true.

Example 2:

Input: nums = [2,3,1,2]
Output: false
Explanation:
[3,1,2] is the result of removing the element at index 0.
[2,1,2] is the result of removing the element at index 1.
[2,3,2] is the result of removing the element at index 2.
[2,3,1] is the result of removing the element at index 3.
No resulting array is strictly increasing, so return false.

Example 3:

Input: nums = [1,1,1]
Output: false
Explanation: The result of removing any element is [1,1].
[1,1] is not strictly increasing, so return false.

Constraints:

  • 2 <= nums.length <= 1000
  • 1 <= nums[i] <= 1000

Solution 1: Brute Force

Enumerate the element to remove and check.

Time complexity: O(n2)
Space complexity: O(n) -> O(1)

C++

C++/O(1) Space

花花酱 LeetCode 1300. Sum of Mutated Array Closest to Target

Given an integer array arr and a target value target, return the integer value such that when we change all the integers larger than value in the given array to be equal to value, the sum of the array gets as close as possible (in absolute difference) to target.

In case of a tie, return the minimum such integer.

Notice that the answer is not neccesarilly a number from arr.

Example 1:

Input: arr = [4,9,3], target = 10
Output: 3
Explanation: When using 3 arr converts to [3, 3, 3] which sums 9 and that's the optimal answer.

Example 2:

Input: arr = [2,3,5], target = 10
Output: 5

Example 3:

Input: arr = [60864,25176,27249,21296,20204], target = 56803
Output: 11361

Constraints:

  • 1 <= arr.length <= 104
  • 1 <= arr[i], target <= 105

Solution: Binary Search

Find the smallest number x s.t. sum of the mutated array is >= target. Answer must be either x or x – 1.

Note, the search range should be [0, max(arr))

Time complexity: O(nlogm)
Space complexity: O(1)

C++

花花酱 LeetCode 2111. Minimum Operations to Make the Array K-Increasing

You are given a 0-indexed array arr consisting of n positive integers, and a positive integer k.

The array arr is called K-increasing if arr[i-k] <= arr[i] holds for every index i, where k <= i <= n-1.

  • For example, arr = [4, 1, 5, 2, 6, 2] is K-increasing for k = 2 because:
    • arr[0] <= arr[2] (4 <= 5)
    • arr[1] <= arr[3] (1 <= 2)
    • arr[2] <= arr[4] (5 <= 6)
    • arr[3] <= arr[5] (2 <= 2)
  • However, the same arr is not K-increasing for k = 1 (because arr[0] > arr[1]) or k = 3 (because arr[0] > arr[3]).

In one operation, you can choose an index i and change arr[i] into any positive integer.

Return the minimum number of operations required to make the array K-increasing for the given k.

Example 1:

Input: arr = [5,4,3,2,1], k = 1
Output: 4
Explanation:
For k = 1, the resultant array has to be non-decreasing.
Some of the K-increasing arrays that can be formed are [5,6,7,8,9], [1,1,1,1,1], [2,2,3,4,4]. All of them require 4 operations.
It is suboptimal to change the array to, for example, [6,7,8,9,10] because it would take 5 operations.
It can be shown that we cannot make the array K-increasing in less than 4 operations.

Example 2:

Input: arr = [4,1,5,2,6,2], k = 2
Output: 0
Explanation:
This is the same example as the one in the problem description.
Here, for every index i where 2 <= i <= 5, arr[i-2] <=arr[i].
Since the given array is already K-increasing, we do not need to perform any operations.

Example 3:

Input: arr = [4,1,5,2,6,2], k = 3
Output: 2
Explanation:
Indices 3 and 5 are the only ones not satisfying arr[i-3] <= arr[i] for 3 <= i <= 5.
One of the ways we can make the array K-increasing is by changing arr[3] to 4 and arr[5] to 5.
The array will now be [4,1,5,4,6,5].
Note that there can be other ways to make the array K-increasing, but none of them require less than 2 operations.

Constraints:

  • 1 <= arr.length <= 105
  • 1 <= arr[i], k <= arr.length

Solution: Longest increasing subsequence

if k = 1, we need to modify the following arrays
1. [a[0], a[1], a[2], …]
if k = 2, we need to modify the following arrays
1. [a[0], a[2], a[4], …]
2. [a[1], a[3], a[5], …]
if k = 3, we need to modify the following arrays
1. [a[0], a[3], a[6], …]
2. [a[1], a[4], a[7], …]
3. [a[2], a[5], a[8], …]

These arrays are independent of each other, we just need to find LIS of it, # ops = len(arr) – LIS(arr).
Ans = sum(len(arri) – LIS(arri)) 1 <= i <= k

Reference: 花花酱 LeetCode 300. Longest Increasing Subsequence

Time complexity: O(k * (n/k)* log(n/k)) = O(n * log(n/k))
Space complexity: O(n/k)

C++

Python3