Press "Enter" to skip to content

Posts published in “Search”

花花酱 LeetCode 47. Permutations II

Problem

Given a collection of numbers that might contain duplicates, return all possible unique permutations.

Example:

Input: [1,1,2]
Output:
[
  [1,1,2],
  [1,2,1],
  [2,1,1]
]

Solution

Time complexity: O(n!)

Space complexity: O(n + k)

Related Problems

花花酱 LeetCode 22. Generate Parentheses

Problem

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:

[
  "((()))",
  "(()())",
  "(())()",
  "()(())",
  "()()()"
]

Solution: DFS

Time complexity: O(2^n)

Space complexity: O(k + n)

C++

Related Problems

花花酱 LeetCode 491. Increasing Subsequences

Problem

Given an integer array, your task is to find all the different possible increasing subsequences of the given array, and the length of an increasing subsequence should be at least 2 .

Example:

Input: [4, 6, 7, 7]
Output: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

Note:

  1. The length of the given array will not exceed 15.
  2. The range of integer in the given array is [-100,100].
  3. The given array may contain duplicates, and two equal integers should also be considered as a special case of increasing sequence.

Solution: DFS

Time complexity: O(2^n)

Space complexity: O(n)

C++

 

花花酱 LeetCode 698. Partition to K Equal Sum Subsets

Problem

Given an array of integers nums and a positive integer k, find whether it’s possible to divide this array into knon-empty subsets whose sums are all equal.

Example 1:

Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
Output: True
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.

Note:

  • 1 <= k <= len(nums) <= 16.
  • 0 < nums[i] < 10000.

Solution: Search

Time complexity: O(n!)

Space complexity: O(n)

 

花花酱 LeetCode 864. Shortest Path to Get All Keys

Problem

We are given a 2-dimensional grid"." is an empty cell, "#" is a wall, "@" is the starting point, ("a""b", …) are keys, and ("A""B", …) are locks.

We start at the starting point, and one move consists of walking one space in one of the 4 cardinal directions.  We cannot walk outside the grid, or walk into a wall.  If we walk over a key, we pick it up.  We can’t walk over a lock unless we have the corresponding key.

For some 1 <= K <= 6, there is exactly one lowercase and one uppercase letter of the first K letters of the English alphabet in the grid.  This means that there is exactly one key for each lock, and one lock for each key; and also that the letters used to represent the keys and locks were chosen in the same order as the English alphabet.

Return the lowest number of moves to acquire all keys.  If it’s impossible, return -1.

Example 1:

Input: ["@.a.#","###.#","b.A.B"]
Output: 8

Example 2:

Input: ["@..aA","..B#.","....b"]
Output: 6

Note:

  1. 1 <= grid.length <= 30
  2. 1 <= grid[0].length <= 30
  3. grid[i][j] contains only '.''#''@''a'-'f' and 'A'-'F'
  4. The number of keys is in [1, 6].  Each key has a different letter and opens exactly one lock.

Solution: BFS

Time complexity: O(m*n*64)

Space complexity: O(m*n*64)

C++

Python3

Related Problems