Press "Enter" to skip to content

Posts tagged as “ancestor”

花花酱 LeetCode 1766. Tree of Coprimes

There is a tree (i.e., a connected, undirected graph that has no cycles) consisting of n nodes numbered from 0 to n - 1 and exactly n - 1 edges. Each node has a value associated with it, and the root of the tree is node 0.

To represent this tree, you are given an integer array nums and a 2D array edges. Each nums[i] represents the ith node’s value, and each edges[j] = [uj, vj] represents an edge between nodes uj and vj in the tree.

Two values x and y are coprime if gcd(x, y) == 1 where gcd(x, y) is the greatest common divisor of x and y.

An ancestor of a node i is any other node on the shortest path from node i to the root. A node is not considered an ancestor of itself.

Return an array ans of size nwhere ans[i] is the closest ancestor to node i such that nums[i] and nums[ans[i]] are coprime, or -1 if there is no such ancestor.

Example 1:

Input: nums = [2,3,3,2], edges = [[0,1],[1,2],[1,3]]
Output: [-1,0,0,1]
Explanation: In the above figure, each node's value is in parentheses.
- Node 0 has no coprime ancestors.
- Node 1 has only one ancestor, node 0. Their values are coprime (gcd(2,3) == 1).
- Node 2 has two ancestors, nodes 1 and 0. Node 1's value is not coprime (gcd(3,3) == 3), but node 0's
  value is (gcd(2,3) == 1), so node 0 is the closest valid ancestor.
- Node 3 has two ancestors, nodes 1 and 0. It is coprime with node 1 (gcd(3,2) == 1), so node 1 is its
  closest valid ancestor.

Example 2:

Input: nums = [5,6,10,2,3,6,15], edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]]
Output: [-1,0,-1,0,0,0,-1]

Constraints:

  • nums.length == n
  • 1 <= nums[i] <= 50
  • 1 <= n <= 105
  • edges.length == n - 1
  • edges[j].length == 2
  • 0 <= uj, vj < n
  • uj != vj

Solution: DFS + Stack

Pre-compute for coprimes for each number.

For each node, enumerate all it’s coprime numbers, find the deepest occurrence.

Time complexity: O(n * max(nums))
Space complexity: O(n)

C++

花花酱 LeetCode 1530. Number of Good Leaf Nodes Pairs

Given the root of a binary tree and an integer distance. A pair of two different leaf nodes of a binary tree is said to be good if the length of the shortest path between them is less than or equal to distance.

Return the number of good leaf node pairs in the tree.

Example 1:

Input: root = [1,2,3,null,4], distance = 3
Output: 1
Explanation: The leaf nodes of the tree are 3 and 4 and the length of the shortest path between them is 3. This is the only good pair.

Example 2:

Input: root = [1,2,3,4,5,6,7], distance = 3
Output: 2
Explanation: The good pairs are [4,5] and [6,7] with shortest path = 2. The pair [4,6] is not good because the length of ther shortest path between them is 4.

Example 3:

Input: root = [7,1,4,6,null,5,3,null,null,null,null,null,2], distance = 3
Output: 1
Explanation: The only good pair is [2,5].

Example 4:

Input: root = [100], distance = 1
Output: 0

Example 5:

Input: root = [1,1,1], distance = 2
Output: 1

Constraints:

  • The number of nodes in the tree is in the range [1, 2^10].
  • Each node’s value is between [1, 100].
  • 1 <= distance <= 10

Solution: Brute Force

Since n <= 1024, and distance <= 10, we can collect all leaf nodes and try all pairs.

Time complexity: O(|leaves|^2)
Space complexity: O(n)

C++

Solution 2: Post order traversal

For each node, compute the # of good leaf pair under itself.
1. count the frequency of leaf node at distance 1, 2, …, d for both left and right child.
2. ans += l[i] * r[j] (i + j <= distance) cartesian product
3. increase the distance by 1 for each leaf node when pop
Time complexity: O(n*D^2)
Space complexity: O(n)

C++

Java

Python3