Press "Enter" to skip to content

Posts tagged as “array”

花花酱 1646. Get Maximum in Generated Array

You are given an integer n. An array nums of length n + 1 is generated in the following way:

  • nums[0] = 0
  • nums[1] = 1
  • nums[2 * i] = nums[i] when 2 <= 2 * i <= n
  • nums[2 * i + 1] = nums[i] + nums[i + 1] when 2 <= 2 * i + 1 <= n

Returnthe maximum integer in the array nums​​​.

Example 1:

Input: n = 7
Output: 3
Explanation: According to the given rules:
  nums[0] = 0
  nums[1] = 1
  nums[(1 * 2) = 2] = nums[1] = 1
  nums[(1 * 2) + 1 = 3] = nums[1] + nums[2] = 1 + 1 = 2
  nums[(2 * 2) = 4] = nums[2] = 1
  nums[(2 * 2) + 1 = 5] = nums[2] + nums[3] = 1 + 2 = 3
  nums[(3 * 2) = 6] = nums[3] = 2
  nums[(3 * 2) + 1 = 7] = nums[3] + nums[4] = 2 + 1 = 3
Hence, nums = [0,1,1,2,1,3,2,3], and the maximum is 3.

Example 2:

Input: n = 2
Output: 1
Explanation: According to the given rules, the maximum between nums[0], nums[1], and nums[2] is 1.

Example 3:

Input: n = 3
Output: 2
Explanation: According to the given rules, the maximum between nums[0], nums[1], nums[2], and nums[3] is 2.

Constraints:

  • 0 <= n <= 100

Solution: Simulation

Generate the array by the given rules.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1640. Check Array Formation Through Concatenation

You are given an array of distinct integers arr and an array of integer arrays pieces, where the integers in pieces are distinct. Your goal is to form arr by concatenating the arrays in pieces in any order. However, you are not allowed to reorder the integers in each array pieces[i].

Return true if it is possible to form the array arr from pieces. Otherwise, return false.

Example 1:

Input: arr = [85], pieces = [[85]]
Output: true

Example 2:

Input: arr = [15,88], pieces = [[88],[15]]
Output: true
Explanation: Concatenate [15] then [88]

Example 3:

Input: arr = [49,18,16], pieces = [[16,18,49]]
Output: false
Explanation: Even though the numbers match, we cannot reorder pieces[0].

Example 4:

Input: arr = [91,4,64,78], pieces = [[78],[4,64],[91]]
Output: true
Explanation: Concatenate [91] then [4,64] then [78]

Example 5:

Input: arr = [1,3,5,7], pieces = [[2,4,6,8]]
Output: false

Constraints:

  • 1 <= pieces.length <= arr.length <= 100
  • sum(pieces[i].length) == arr.length
  • 1 <= pieces[i].length <= arr.length
  • 1 <= arr[i], pieces[i][j] <= 100
  • The integers in arr are distinct.
  • The integers in pieces are distinct (i.e., If we flatten pieces in a 1D array, all the integers in this array are distinct).

Solution: Hashtable

Store the index of the first number of each piece, for each number a in arr, concat the entire piece array whose first element equals to a.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1636. Sort Array by Increasing Frequency

Given an array of integers nums, sort the array in increasing order based on the frequency of the values. If multiple values have the same frequency, sort them in decreasing order.

Return the sorted array.

Example 1:

Input: nums = [1,1,2,2,2,3]
Output: [3,1,1,2,2,2]
Explanation: '3' has a frequency of 1, '1' has a frequency of 2, and '2' has a frequency of 3.

Example 2:

Input: nums = [2,3,1,3,2]
Output: [1,3,3,2,2]
Explanation: '2' and '3' both have a frequency of 2, so they are sorted in decreasing order.

Example 3:

Input: nums = [-1,1,-6,4,5,-6,1,4,1]
Output: [5,-1,4,4,-6,-6,1,1,1]

Constraints:

  • 1 <= nums.length <= 100
  • -100 <= nums[i] <= 100

Solution: Hashtable + Sorting

Use a hashtable to track the frequency of each number.

Time complexity: O(nlogn)
Space complexity: O(n)

C++

花花酱 LeetCode 1630. Arithmetic Subarrays

A sequence of numbers is called arithmetic if it consists of at least two elements, and the difference between every two consecutive elements is the same. More formally, a sequence s is arithmetic if and only if s[i+1] - s[i] == s[1] - s[0] for all valid i.

For example, these are arithmetic sequences:

The following sequence is not arithmetic:

1, 1, 2, 5, 7

You are given an array of n integers, nums, and two arrays of m integers each, l and r, representing the m range queries, where the ith query is the range [l[i], r[i]]. All the arrays are 0-indexed.

Return a list of boolean elements answer, where answer[i] is true if the subarray nums[l[i]], nums[l[i]+1], ... , nums[r[i]] can be rearranged to form an arithmetic sequence, and false otherwise.

Example 1:

Input: nums = [4,6,5,9,3,7], l = [0,0,2], r = [2,3,5]
Output: [true,false,true]
Explanation:
In the 0th query, the subarray is [4,6,5]. This can be rearranged as [6,5,4], which is an arithmetic sequence.
In the 1st query, the subarray is [4,6,5,9]. This cannot be rearranged as an arithmetic sequence.
In the 2nd query, the subarray is [5,9,3,7]. This can be rearranged as [3,5,7,9], which is an arithmetic sequence.

Example 2:

Input: nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10]
Output: [false,true,false,false,true,true]

Constraints:

  • n == nums.length
  • m == l.length
  • m == r.length
  • 2 <= n <= 500
  • 1 <= m <= 500
  • 0 <= l[i] < r[i] < n
  • -105 <= nums[i] <= 105

Solution: Brute Force

Sort the range of each query and check.

Time complexity: O(nlogn * m)
Space complexity: O(n)

C++

花花酱 LeetCode 1629. Slowest Key

A newly designed keypad was tested, where a tester pressed a sequence of n keys, one at a time.

You are given a string keysPressed of length n, where keysPressed[i] was the ith key pressed in the testing sequence, and a sorted list releaseTimes, where releaseTimes[i] was the time the ith key was released. Both arrays are 0-indexed. The 0th key was pressed at the time 0, and every subsequent key was pressed at the exact time the previous key was released.

The tester wants to know the key of the keypress that had the longest duration. The ithkeypress had a duration of releaseTimes[i] - releaseTimes[i - 1], and the 0th keypress had a duration of releaseTimes[0].

Note that the same key could have been pressed multiple times during the test, and these multiple presses of the same key may not have had the same duration.

Return the key of the keypress that had the longest duration. If there are multiple such keypresses, return the lexicographically largest key of the keypresses.

Example 1:

Input: releaseTimes = [9,29,49,50], keysPressed = "cbcd"
Output: "c"
Explanation: The keypresses were as follows:
Keypress for 'c' had a duration of 9 (pressed at time 0 and released at time 9).
Keypress for 'b' had a duration of 29 - 9 = 20 (pressed at time 9 right after the release of the previous character and released at time 29).
Keypress for 'c' had a duration of 49 - 29 = 20 (pressed at time 29 right after the release of the previous character and released at time 49).
Keypress for 'd' had a duration of 50 - 49 = 1 (pressed at time 49 right after the release of the previous character and released at time 50).
The longest of these was the keypress for 'b' and the second keypress for 'c', both with duration 20.
'c' is lexicographically larger than 'b', so the answer is 'c'.

Example 2:

Input: releaseTimes = [12,23,36,46,62], keysPressed = "spuda"
Output: "a"
Explanation: The keypresses were as follows:
Keypress for 's' had a duration of 12.
Keypress for 'p' had a duration of 23 - 12 = 11.
Keypress for 'u' had a duration of 36 - 23 = 13.
Keypress for 'd' had a duration of 46 - 36 = 10.
Keypress for 'a' had a duration of 62 - 46 = 16.
The longest of these was the keypress for 'a' with duration 16.

Constraints:

  • releaseTimes.length == n
  • keysPressed.length == n
  • 2 <= n <= 1000
  • 0 <= releaseTimes[i] <= 109
  • releaseTimes[i] < releaseTimes[i+1]
  • keysPressed contains only lowercase English letters.

Solution: Straightforward

Time complexity: O(n)
Space complexity: O(1)

C++

 class Solution { public: char slowestKey(vector& releaseTimes, string keysPressed) { int l = releaseTimes[0]; char ans = keysPressed[0]; for (int i = 1; i < releaseTimes.size(); ++i) { int t = releaseTimes[i] - releaseTimes[i - 1]; if (t > l) { ans = keysPressed[i]; l = t; } else if (t == l) { ans = max(ans, keysPressed[i]); } } return ans; } };