Press "Enter" to skip to content

Posts tagged as “array”

花花酱 LeetCode 1351. Count Negative Numbers in a Sorted Matrix

Given a m * n matrix grid which is sorted in non-increasing order both row-wise and column-wise. 

Return the number of negative numbers in grid.

Example 1:

Input: grid = [[4,3,2,-1],[3,2,1,-1],[1,1,-1,-2],[-1,-1,-2,-3]]
Output: 8
Explanation: There are 8 negatives number in the matrix.

Example 2:

Input: grid = [[3,2],[1,0]]
Output: 0

Example 3:

Input: grid = [[1,-1],[-1,-1]]
Output: 3

Example 4:

Input: grid = [[-1]]
Output: 1

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
  • -100 <= grid[i][j] <= 100

Solution 1: Brute Force

Time complexity: O(m*n)
Space complexity: O(1)

C++

Solution 2: Find the frontier

Time complexity: O(m+n)
Space complexity: O(1)

C++

花花酱 LeetCode 1331. Rank Transform of an Array

Given an array of integers arr, replace each element with its rank.

The rank represents how large the element is. The rank has the following rules:

  • Rank is an integer starting from 1.
  • The larger the element, the larger the rank. If two elements are equal, their rank must be the same.
  • Rank should be as small as possible.

Example 1:

Input: arr = [40,10,20,30]
Output: [4,1,2,3]
Explanation: 40 is the largest element. 10 is the smallest. 20 is the second smallest. 30 is the third smallest.

Example 2:

Input: arr = [100,100,100]
Output: [1,1,1]
Explanation: Same elements share the same rank.

Example 3:

Input: arr = [37,12,28,9,100,56,80,5,12]
Output: [5,3,4,2,8,6,7,1,3]

Constraints:

  • 0 <= arr.length <= 105
  • -109 <= arr[i] <= 109

Solution: Sorting + HashTable

Time complexity: O(nlogn)
Space complexity: O(n)

C++

花花酱 LeetCode 1330. Reverse Subarray To Maximize Array Value

You are given an integer array nums. The value of this array is defined as the sum of |nums[i]-nums[i+1]| for all 0 <= i < nums.length-1.

You are allowed to select any subarray of the given array and reverse it. You can perform this operation only once.

Find maximum possible value of the final array.

Example 1:

Input: nums = [2,3,1,5,4]
Output: 10
Explanation: By reversing the subarray [3,1,5] the array becomes [2,5,1,3,4] whose value is 10.

Example 2:

Input: nums = [2,4,9,24,2,1,10]
Output: 68

Constraints:

  • 1 <= nums.length <= 3*10^4
  • -10^5 <= nums[i] <= 10^5

Solution: Greedy

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 42. Trapping Rain Water

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.


The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

Example:

Input: [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6

Solution 1: Brute Force

r[i] = min(max(h[0:i+1]), max(h[i:n]))
ans = sum(r[i])

Time complexity: O(n^2)
Space complexity: O(1)

C++

Solution 2: DP

l[i] := max(h[0:i+1])
r[i] := max(h[i:n])
ans = sum(min(l[i], r[i]) – h[i])

Time complexity: O(n)
Space complexity: O(n)

C++

Solution 3: Two Pointers

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1304. Find N Unique Integers Sum up to Zero

Given an integer n, return any array containing n unique integers such that they add up to 0.

Example 1:

Input: n = 5
Output: [-7,-1,1,3,4]
Explanation: These arrays also are accepted [-5,-1,1,2,3] , [-3,-1,2,-2,4].

Example 2:

Input: n = 3
Output: [-1,0,1]

Example 3:

Input: n = 1
Output: [0]

Constraints:

  • 1 <= n <= 1000

Solution: Generation

Use numbers from {-n/2, … n/2} + {0 if n is odd}

Time complexity: O(n)
Space complexity: O(1)

C++