Press "Enter" to skip to content

Posts tagged as “DFS”

花花酱 LeetCode 753. Cracking the Safe

题目大意:让你构建一个最短字符串包含所有可能的密码。

There is a box protected by a password. The password is n digits, where each letter can be one of the first kdigits 0, 1, ..., k-1.

You can keep inputting the password, the password will automatically be matched against the last n digits entered.

For example, assuming the password is "345", I can open it when I type "012345", but I enter a total of 6 digits.

Please return any string of minimum length that is guaranteed to open the box after the entire string is inputted.

Example 1:

Example 2:

Note:

  1. n will be in the range [1, 4].
  2. k will be in the range [1, 10].
  3. k^n will be at most 4096.


Idea: Search

Solution 1: DFS w/ backtracking

C ++

Solution 2: DFS w/o backtracking

C++

花花酱 LeetCode 17. Letter Combinations of a Phone Number

题目大意:给你一串电话号码,输出可以由这串电话号码打出的所有字符串。

Problem:

Given a digit string, return all possible letter combinations that the number could represent.

A mapping of digit to letters (just like on the telephone buttons) is given below.

Note:
Although the above answer is in lexicographical order, your answer could be in any order you want.

Solution 1: DFS

C++

Java

Python3

Solution 2:  BFS

C++

Java

Python

 

花花酱 LeetCode 301. Remove Invalid Parentheses

Problem:

Remove the minimum number of invalid parentheses in order to make the input string valid. Return all possible results.

Note: The input string may contain letters other than the parentheses ( and ).

Examples:

 

题目大意:给你一个字符串,由”(” “)”和其他字符构成。让你删除数量最少的括号使得表达式合法(括号都匹配)。输出所有的合法表达式。

 

Idea:

Search 

Solution: DFS

C++

花花酱 LeetCode 749. Contain Virus

题目大意:给你一个格子地图上面有一些病毒用1表示,未受感染的格子用0表示。带有病毒的格子每天会向四周的格子传播病毒。在每一天,你必须在最大的病毒(连通区域)的周围建造墙阻挡病毒传播。问你一共需要多少个墙才能阻挡所有病毒传播。

Problems:

A virus is spreading rapidly, and your task is to quarantine the infected area by installing walls.

The world is modeled as a 2-D array of cells, where 0 represents uninfected cells, and 1 represents cells contaminated with the virus. A wall (and only one wall) can be installed between any two 4-directionally adjacent cells, on the shared boundary.

Every night, the virus spreads to all neighboring cells in all four directions unless blocked by a wall. Resources are limited. Each day, you can install walls around only one region — the affected area (continuous block of infected cells) that threatens the most uninfected cells the following night. There will never be a tie.

Can you save the day? If so, what is the number of walls required? If not, and the world becomes fully infected, return the number of walls used.

Example 1:

Input: grid = 
[[0,1,0,0,0,0,0,1],
 [0,1,0,0,0,0,0,1],
 [0,0,0,0,0,0,0,1],
 [0,0,0,0,0,0,0,0]]
Output: 10
Explanation:
There are 2 contaminated regions.
On the first day, add 5 walls to quarantine the viral region on the left. The board after the virus spreads is:

[[0,1,0,0,0,0,1,1],
 [0,1,0,0,0,0,1,1],
 [0,0,0,0,0,0,1,1],
 [0,0,0,0,0,0,0,1]]

On the second day, add 5 walls to quarantine the viral region on the right. The virus is fully contained.

Example 2:

Input: grid = 
[[1,1,1],
 [1,0,1],
 [1,1,1]]
Output: 4
Explanation: Even though there is only one cell saved, there are 4 walls built.
Notice that walls are only built on the shared boundary of two different cells.

Example 3:

Input: grid = 
[[1,1,1,0,0,0,0,0,0],
 [1,0,1,0,1,1,1,1,1],
 [1,1,1,0,0,0,0,0,0]]
Output: 13
Explanation: The region on the left only builds two new walls.

Note:

  1. The number of rows and columns of grid will each be in the range [1, 50].
  2. Each grid[i][j] will be either 0 or 1.
  3. Throughout the described process, there is always a contiguous viral region that will infect strictly more uncontaminated squares in the next round.

 

Idea:

Use DFS to find virus regions, next affected regions and # of walls needed to block each virus region.

Simulate the virus expansion process.

Solution:

C++ / DFS

Time complexity: O(n^3)

Space complexity: O(n^2)

Related Problems:

花花酱 LeetCode 742. Closest Leaf in a Binary Tree

Problem:

Given a binary tree where every node has a unique value, and a target key k, find the value of the closest leaf node to target k in the tree.

Here, closest to a leaf means the least number of edges travelled on the binary tree to reach any leaf of the tree. Also, a node is called a leaf if it has no children.

In the following examples, the input tree is represented in flattened form row by row. The actual root tree given will be a TreeNode object.

Example 1:

Example 2:

Example 3:

Note:

  1. root represents a binary tree with at least 1 node and at most 1000 nodes.
  2. Every node has a unique node.val in range [1, 1000].
  3. There exists some node in the given binary tree for which node.val == k.


题目大意:

给你一棵树,每个节点的值都不相同。

给定一个节点值,让你找到离这个节点距离最近的叶子节点的值。

Idea:

Shortest path from source to any leaf nodes in a undirected unweighted graph.

问题转换为在无向/等权重的图中找一条从起始节点到任意叶子节点最短路径。

Solution:

C++ / DFS + BFS

Time complexity: O(n)

Space complexity: O(n)