Posts tagged as “dp”

Problem:

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and rightthen becomes adjacent.

Find the maximum coins you can collect by bursting the balloons wisely.

Note:
(1) You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
(2) 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

Example:

Given [3, 1, 5, 8]

Return 167

Idea

DP

Solution1:

C++ / Recursion with memoization

Solution2:

C++  / DP

Java / DP

Java

Problem:

Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7.

A subsequence of a string S is obtained by deleting 0 or more characters from S.

A sequence is palindromic if it is equal to the sequence reversed.

Two sequences A_1, A_2, ... and B_1, B_2, ... are different if there is some i for which A_i != B_i.

Example 1:

Input:
S = 'bccb'
Output: 6
Explanation:
The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'.
Note that 'bcb' is counted only once, even though it occurs twice.


Example 2:

Input:
Output: 104860361
Explanation:
There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.


Note:

• The length of S will be in the range [1, 1000].
• Each character S[i] will be in the set {'a', 'b', 'c', 'd'}.

Idea:

DP

Solution 1: Recursion with memoization

Time complexity: O(n^2)
Space complexity: O(n^2)

Solution 2: DP

Pyhton

Related Problems:

Problem:

Given two arrays of length m and n with digits 0-9 representing two numbers. Create the maximum number of length k <= m + n from digits of the two. The relative order of the digits from the same array must be preserved. Return an array of the k digits. You should try to optimize your time and space complexity.

Example 1:

nums1 = [3, 4, 6, 5]
nums2 = [9, 1, 2, 5, 8, 3]
k = 5
return [9, 8, 6, 5, 3]

Example 2:

nums1 = [6, 7]
nums2 = [6, 0, 4]
k = 5
return [6, 7, 6, 0, 4]

Example 3:

nums1 = [3, 9]
nums2 = [8, 9]
k = 3
return [9, 8, 9]

Solution:

Time complexity: O(k * (n1+n2)^2)

Space complexity: O(n1+n2)

Java

Problem:

Given an array of integers nums, write a method that returns the “pivot” index of this array.

We define the pivot index as the index where the sum of the numbers to the left of the index is equal to the sum of the numbers to the right of the index.

If no such index exists, we should return -1. If there are multiple pivot indexes, you should return the left-most pivot index.

Example 1:

Example 2:

Note:

• The length of nums will be in the range [0, 10000].
• Each element nums[i] will be an integer in the range [-1000, 1000].

Idea:

DP

Solution:

C++

Java

Python

Problem:

A message containing letters from A-Z is being encoded to numbers using the following mapping:

‘A’ -> 1

‘B’ -> 2

‘Z’ -> 26

Given an encoded message containing digits, determine the total number of ways to decode it.

For example,
Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12).

The number of ways decoding "12" is 2.

Idea:

Dynamic Programming

Solution:

C++

Time complexity: O(n^2)

Space complexity: O(n^2)

C++

Time complexity: O(n)

Space complexity: O(n)

C++

Time complexity: O(n)

Space complexity: O(1)

Related Problems: