Press "Enter" to skip to content

Posts tagged as “easy”

花花酱 LeetCode 2154. Keep Multiplying Found Values by Two

You are given an array of integers nums. You are also given an integer original which is the first number that needs to be searched for in nums.

You then do the following steps:

  1. If original is found in numsmultiply it by two (i.e., set original = 2 * original).
  2. Otherwise, stop the process.
  3. Repeat this process with the new number as long as you keep finding the number.

Return the final value of original.

Example 1:

Input: nums = [5,3,6,1,12], original = 3
Output: 24
Explanation: 
- 3 is found in nums. 3 is multiplied by 2 to obtain 6.
- 6 is found in nums. 6 is multiplied by 2 to obtain 12.
- 12 is found in nums. 12 is multiplied by 2 to obtain 24.
- 24 is not found in nums. Thus, 24 is returned.

Example 2:

Input: nums = [2,7,9], original = 4
Output: 4
Explanation:
- 4 is not found in nums. Thus, 4 is returned.

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i], original <= 1000

Solution: Hashset

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 2148. Count Elements With Strictly Smaller and Greater Elements

Given an integer array nums, return the number of elements that have both a strictly smaller and a strictly greater element appear in nums.

Example 1:

Input: nums = [11,7,2,15]
Output: 2
Explanation: The element 7 has the element 2 strictly smaller than it and the element 11 strictly greater than it.
Element 11 has element 7 strictly smaller than it and element 15 strictly greater than it.
In total there are 2 elements having both a strictly smaller and a strictly greater element appear in nums.

Example 2:

Input: nums = [-3,3,3,90]
Output: 2
Explanation: The element 3 has the element -3 strictly smaller than it and the element 90 strictly greater than it.
Since there are two elements with the value 3, in total there are 2 elements having both a strictly smaller and a strictly greater element appear in nums.

Constraints:

  • 1 <= nums.length <= 100
  • -105 <= nums[i] <= 105

Solution: Min / Max elements

Find min and max of the array, count elements other than those two.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2144. Minimum Cost of Buying Candies With Discount

A shop is selling candies at a discount. For every two candies sold, the shop gives a third candy for free.

The customer can choose any candy to take away for free as long as the cost of the chosen candy is less than or equal to the minimum cost of the two candies bought.

  • For example, if there are 4 candies with costs 123, and 4, and the customer buys candies with costs 2 and 3, they can take the candy with cost 1 for free, but not the candy with cost 4.

Given a 0-indexed integer array cost, where cost[i] denotes the cost of the ith candy, return the minimum cost of buying all the candies.

Example 1:

Input: cost = [1,2,3]
Output: 5
Explanation: We buy the candies with costs 2 and 3, and take the candy with cost 1 for free.
The total cost of buying all candies is 2 + 3 = 5. This is the only way we can buy the candies.
Note that we cannot buy candies with costs 1 and 3, and then take the candy with cost 2 for free.
The cost of the free candy has to be less than or equal to the minimum cost of the purchased candies.

Example 2:

Input: cost = [6,5,7,9,2,2]
Output: 23
Explanation: The way in which we can get the minimum cost is described below:
- Buy candies with costs 9 and 7
- Take the candy with cost 6 for free
- We buy candies with costs 5 and 2
- Take the last remaining candy with cost 2 for free
Hence, the minimum cost to buy all candies is 9 + 7 + 5 + 2 = 23.

Example 3:

Input: cost = [5,5]
Output: 10
Explanation: Since there are only 2 candies, we buy both of them. There is not a third candy we can take for free.
Hence, the minimum cost to buy all candies is 5 + 5 = 10.

Constraints:

  • 1 <= cost.length <= 100
  • 1 <= cost[i] <= 100

Solution: Greedy

Sort candies in descending order. Buy 1st, 2nd, take 3rd, buy 4th, 5th take 6th, …

Time complexity: O(nlogn)
Space complexity: O(1)

C++

花花酱 LeetCode 2138. Divide a String Into Groups of Size k

A string s can be partitioned into groups of size k using the following procedure:

  • The first group consists of the first k characters of the string, the second group consists of the next k characters of the string, and so on. Each character can be a part of exactly one group.
  • For the last group, if the string does not have k characters remaining, a character fill is used to complete the group.

Note that the partition is done so that after removing the fill character from the last group (if it exists) and concatenating all the groups in order, the resultant string should be s.

Given the string s, the size of each group k and the character fill, return a string array denoting the composition of every group s has been divided into, using the above procedure.

Example 1:

Input: s = "abcdefghi", k = 3, fill = "x"
Output: ["abc","def","ghi"]
Explanation:
The first 3 characters "abc" form the first group.
The next 3 characters "def" form the second group.
The last 3 characters "ghi" form the third group.
Since all groups can be completely filled by characters from the string, we do not need to use fill.
Thus, the groups formed are "abc", "def", and "ghi".

Example 2:

Input: s = "abcdefghij", k = 3, fill = "x"
Output: ["abc","def","ghi","jxx"]
Explanation:
Similar to the previous example, we are forming the first three groups "abc", "def", and "ghi".
For the last group, we can only use the character 'j' from the string. To complete this group, we add 'x' twice.
Thus, the 4 groups formed are "abc", "def", "ghi", and "jxx".

Constraints:

  • 1 <= s.length <= 100
  • s consists of lowercase English letters only.
  • 1 <= k <= 100
  • fill is a lowercase English letter.

Solution: Pre-fill

Time complexity: O(n)
Space complexity: O(k)

C++

花花酱 LeetCode 2133. Check if Every Row and Column Contains All Numbers

An n x n matrix is valid if every row and every column contains all the integers from 1 to n (inclusive).

Given an n x n integer matrix matrix, return true if the matrix is valid. Otherwise, return false.

Example 1:

Input: matrix = [[1,2,3],[3,1,2],[2,3,1]]
Output: true
Explanation: In this case, n = 3, and every row and column contains the numbers 1, 2, and 3.
Hence, we return true.

Example 2:

Input: matrix = [[1,1,1],[1,2,3],[1,2,3]]
Output: false
Explanation: In this case, n = 3, but the first row and the first column do not contain the numbers 2 or 3.
Hence, we return false.

Constraints:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 100
  • 1 <= matrix[i][j] <= n

Solution: Bitset / hashtable

Time complexity: O(n2)
Space complexity: O(n)

C++