Given two string arrays words1 and words2, return the number of strings that appear exactly once in each of the two arrays.
Example 1:
Input: words1 = ["leetcode","is","amazing","as","is"], words2 = ["amazing","leetcode","is"]
Output: 2
Explanation:
- "leetcode" appears exactly once in each of the two arrays. We count this string.
- "amazing" appears exactly once in each of the two arrays. We count this string.
- "is" appears in each of the two arrays, but there are 2 occurrences of it in words1. We do not count this string.
- "as" appears once in words1, but does not appear in words2. We do not count this string.
Thus, there are 2 strings that appear exactly once in each of the two arrays.
Example 2:
Input: words1 = ["b","bb","bbb"], words2 = ["a","aa","aaa"]
Output: 0
Explanation: There are no strings that appear in each of the two arrays.
Example 3:
Input: words1 = ["a","ab"], words2 = ["a","a","a","ab"]
Output: 1
Explanation: The only string that appears exactly once in each of the two arrays is "ab".
Constraints:
1 <= words1.length, words2.length <= 1000
1 <= words1[i].length, words2[j].length <= 30
words1[i] and words2[j] consists only of lowercase English letters.
Solution: Hashtable
Time complexity: O(n + m) Space complexity: O(n + m)
There are n houses evenly lined up on the street, and each house is beautifully painted. You are given a 0-indexed integer array colors of length n, where colors[i] represents the color of the ith house.
Return the maximum distance between two houses with different colors.
The distance between the ith and jth houses is abs(i - j), where abs(x) is the absolute value of x.
Example 1:
Input: colors = [1,1,1,6,1,1,1]
Output: 3
Explanation: In the above image, color 1 is blue, and color 6 is red.
The furthest two houses with different colors are house 0 and house 3.
House 0 has color 1, and house 3 has color 6. The distance between them is abs(0 - 3) = 3.
Note that houses 3 and 6 can also produce the optimal answer.
Example 2:
Input: colors = [1,8,3,8,3]
Output: 4
Explanation: In the above image, color 1 is blue, color 8 is yellow, and color 3 is green.
The furthest two houses with different colors are house 0 and house 4.
House 0 has color 1, and house 4 has color 3. The distance between them is abs(0 - 4) = 4.
Example 3:
Input: colors = [0,1]
Output: 1
Explanation: The furthest two houses with different colors are house 0 and house 1.
House 0 has color 0, and house 1 has color 1. The distance between them is abs(0 - 1) = 1.
Constraints:
n == colors.length
2 <= n <= 100
0 <= colors[i] <= 100
Test data are generated such that at least two houses have different colors.
Solution 1: Brute Force
Try all pairs. Time complexity: O(n2) Space complexity: O(1)
C++
1
2
3
4
5
6
7
8
9
10
11
12
// Author: Huahua
classSolution{
public:
intmaxDistance(vector<int>&colors){
constintn=colors.size();
for(intd=n-1;d>0;--d)
for(inti=0;i+d<n;++i)
if(colors[i]!=colors[i+d])
returnd;
return0;
}
};
Solution 2: Greedy / One pass
First house or last house must be involved in the ans.
Scan the house and check with first and last house.