Press "Enter" to skip to content

Posts tagged as “easy”

花花酱 LeetCode 2053. Kth Distinct String in an Array

distinct string is a string that is present only once in an array.

Given an array of strings arr, and an integer k, return the kth distinct string present in arr. If there are fewer than k distinct strings, return an empty string "".

Note that the strings are considered in the order in which they appear in the array.

Example 1:

Input: arr = ["d","b","c","b","c","a"], k = 2
Output: "a"
Explanation:
The only distinct strings in arr are "d" and "a".
"d" appears 1st, so it is the 1st distinct string.
"a" appears 2nd, so it is the 2nd distinct string.
Since k == 2, "a" is returned. 

Example 2:

Input: arr = ["aaa","aa","a"], k = 1
Output: "aaa"
Explanation:
All strings in arr are distinct, so the 1st string "aaa" is returned.

Example 3:

Input: arr = ["a","b","a"], k = 3
Output: ""
Explanation:
The only distinct string is "b". Since there are fewer than 3 distinct strings, we return an empty string "".

Constraints:

  • 1 <= k <= arr.length <= 1000
  • 1 <= arr[i].length <= 5
  • arr[i] consists of lowercase English letters.

Solution: Hashtable

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 2047. Number of Valid Words in a Sentence

A sentence consists of lowercase letters ('a' to 'z'), digits ('0' to '9'), hyphens ('-'), punctuation marks ('!''.', and ','), and spaces (' ') only. Each sentence can be broken down into one or more tokens separated by one or more spaces ' '.

A token is a valid word if:

  • It only contains lowercase letters, hyphens, and/or punctuation (no digits).
  • There is at most one hyphen '-'. If present, it should be surrounded by lowercase characters ("a-b" is valid, but "-ab" and "ab-" are not valid).
  • There is at most one punctuation mark. If present, it should be at the end of the token.

Examples of valid words include "a-b.""afad""ba-c""a!", and "!".

Given a string sentence, return the number of valid words in sentence.

Example 1:

Input: sentence = "cat and  dog"
Output: 3
Explanation: The valid words in the sentence are "cat", "and", and "dog".

Example 2:

Input: sentence = "!this  1-s b8d!"
Output: 0
Explanation: There are no valid words in the sentence.
"!this" is invalid because it starts with a punctuation mark.
"1-s" and "b8d" are invalid because they contain digits.

Example 3:

Input: sentence = "alice and  bob are playing stone-game10"
Output: 5
Explanation: The valid words in the sentence are "alice", "and", "bob", "are", and "playing".
"stone-game10" is invalid because it contains digits.

Example 4:

Input: sentence = "he bought 2 pencils, 3 erasers, and 1  pencil-sharpener."
Output: 6
Explanation: The valid words in the sentence are "he", "bought", "pencils,", "erasers,", "and", and "pencil-sharpener.".

Constraints:

  • 1 <= sentence.length <= 1000
  • sentence only contains lowercase English letters, digits, ' ''-''!''.', and ','.
  • There will be at least 1 token.

Solution 1: Brute Force

Time complexity: O(n)
Space complexity: O(1)

C++

Solution 2: Regex

Time complexity: O(n^2)?
Space complexity: O(1)

Python

花花酱 LeetCode 2022. Convert 1D Array Into 2D Array

You are given a 0-indexed 1-dimensional (1D) integer array original, and two integers, m and n. You are tasked with creating a 2-dimensional (2D) array with m rows and n columns using all the elements from original.

The elements from indices 0 to n - 1 (inclusive) of original should form the first row of the constructed 2D array, the elements from indices n to 2 * n - 1 (inclusive) should form the second row of the constructed 2D array, and so on.

Return an m x n 2D array constructed according to the above procedure, or an empty 2D array if it is impossible.

Example 1:

Input: original = [1,2,3,4], m = 2, n = 2
Output: [[1,2],[3,4]]
Explanation:
The constructed 2D array should contain 2 rows and 2 columns.
The first group of n=2 elements in original, [1,2], becomes the first row in the constructed 2D array.
The second group of n=2 elements in original, [3,4], becomes the second row in the constructed 2D array.

Example 2:

Input: original = [1,2,3], m = 1, n = 3
Output: [[1,2,3]]
Explanation:
The constructed 2D array should contain 1 row and 3 columns.
Put all three elements in original into the first row of the constructed 2D array.

Example 3:

Input: original = [1,2], m = 1, n = 1
Output: []
Explanation:
There are 2 elements in original.
It is impossible to fit 2 elements in a 1x1 2D array, so return an empty 2D array.

Example 4:

Input: original = [3], m = 1, n = 2
Output: []
Explanation:
There is 1 element in original.
It is impossible to make 1 element fill all the spots in a 1x2 2D array, so return an empty 2D array.

Constraints:

  • 1 <= original.length <= 5 * 104
  • 1 <= original[i] <= 105
  • 1 <= m, n <= 4 * 104

Solution: Brute Force

the i-th element in original array will have index (i//n, i % n) in the 2D array.

Time complexity: O(n*m)
Space complexity: O(n*m)

C++

花花酱 LeetCode 2032. Two Out of Three

Given three integer arrays nums1nums2, and nums3, return distinct array containing all the values that are present in at least two out of the three arrays. You may return the values in any order.

Example 1:

Input: nums1 = [1,1,3,2], nums2 = [2,3], nums3 = [3]
Output: [3,2]
Explanation: The values that are present in at least two arrays are:
- 3, in all three arrays.
- 2, in nums1 and nums2.

Example 2:

Input: nums1 = [3,1], nums2 = [2,3], nums3 = [1,2]
Output: [2,3,1]
Explanation: The values that are present in at least two arrays are:
- 2, in nums2 and nums3.
- 3, in nums1 and nums2.
- 1, in nums1 and nums3.

Example 3:

Input: nums1 = [1,2,2], nums2 = [4,3,3], nums3 = [5]
Output: []
Explanation: No value is present in at least two arrays.

Constraints:

  • 1 <= nums1.length, nums2.length, nums3.length <= 100
  • 1 <= nums1[i], nums2[j], nums3[k] <= 100

Solution: Hashmap / Bitmask

s[x] := bitmask of x in all array[i]

s[x] = 101 => x in array0 and array2

Time complexity: O(n1 + n2 + n3)
Space complexity: O(n1 + n2 + n3)

C++

花花酱 LeetCode 2037. Minimum Number of Moves to Seat Everyone

There are n seats and n students in a room. You are given an array seats of length n, where seats[i] is the position of the ith seat. You are also given the array students of length n, where students[j] is the position of the jth student.

You may perform the following move any number of times:

  • Increase or decrease the position of the ith student by 1 (i.e., moving the ith student from position x to x + 1 or x - 1)

Return the minimum number of moves required to move each student to a seat such that no two students are in the same seat.

Note that there may be multiple seats or students in the same position at the beginning.

Example 1:

Input: seats = [3,1,5], students = [2,7,4]
Output: 4
Explanation: The students are moved as follows:
- The first student is moved from from position 2 to position 1 using 1 move.
- The second student is moved from from position 7 to position 5 using 2 moves.
- The third student is moved from from position 4 to position 3 using 1 move.
In total, 1 + 2 + 1 = 4 moves were used.

Example 2:

Input: seats = [4,1,5,9], students = [1,3,2,6]
Output: 7
Explanation: The students are moved as follows:
- The first student is not moved.
- The second student is moved from from position 3 to position 4 using 1 move.
- The third student is moved from from position 2 to position 5 using 3 moves.
- The fourth student is moved from from position 6 to position 9 using 3 moves.
In total, 0 + 1 + 3 + 3 = 7 moves were used.

Example 3:

Input: seats = [2,2,6,6], students = [1,3,2,6]
Output: 4
Explanation: The students are moved as follows:
- The first student is moved from from position 1 to position 2 using 1 move.
- The second student is moved from from position 3 to position 6 using 3 moves.
- The third student is not moved.
- The fourth student is not moved.
In total, 1 + 3 + 0 + 0 = 4 moves were used.

Constraints:

  • n == seats.length == students.length
  • 1 <= n <= 100
  • 1 <= seats[i], students[j] <= 100

Solution: Greedy

Sort both arrays, move students[i] to seats[i].

Time complexity: O(nlogn)
Space complexity: O(1)

C++