Press "Enter" to skip to content

Posts tagged as “greedy”

花花酱 LeetCode 321. Create Maximum Number

Problem:

Given two arrays of length m and n with digits 0-9 representing two numbers. Create the maximum number of length k <= m + n from digits of the two. The relative order of the digits from the same array must be preserved. Return an array of the k digits. You should try to optimize your time and space complexity.

Example 1:

nums1 = [3, 4, 6, 5]
nums2 = [9, 1, 2, 5, 8, 3]
k = 5
return [9, 8, 6, 5, 3]

Example 2:

nums1 = [6, 7]
nums2 = [6, 0, 4]
k = 5
return [6, 7, 6, 0, 4]

Example 3:

nums1 = [3, 9]
nums2 = [8, 9]
k = 3
return [9, 8, 9]



题目大意:给你两个数字数组和k,返回从两个数组中选取k个数字能够组成的最大值。

Idea: Greedy + DP

Solution:

Time complexity: O(k * (n1+n2)^2)

Space complexity: O(n1+n2)

C++

Java

花花酱 LeetCode 675. Cut Off Trees for Golf Event

https://leetcode.com/problems/cut-off-trees-for-golf-event/

Problem:

You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-negative 2D map, in this map:

  1. 0 represents the obstacle can’t be reached.
  2. 1 represents the ground can be walked through.
  3. The place with number bigger than 1 represents a tree can be walked through, and this positive number represents the tree’s height.

You are asked to cut off all the trees in this forest in the order of tree’s height – always cut off the tree with lowest height first. And after cutting, the original place has the tree will become a grass (value 1).

You will start from the point (0, 0) and you should output the minimum steps you need to walk to cut off all the trees. If you can’t cut off all the trees, output -1 in that situation.

You are guaranteed that no two trees have the same height and there is at least one tree needs to be cut off.

Example 1:

Example 2:

Example 3:

Hint: size of the given matrix will not exceed 50×50.

 

Idea:

Greedy + Shortest path

Identify and sort the trees by its heights, then find shortest paths between

0,0 to tree[1]
tree[1] to tree[2]

tree[n-1] to tree[n]

Time complexity: O(m^2n^2)

Space complexity: O(mn)

 

Solution: