You are given an integer array nums. A number x is lonely when it appears only once, and no adjacent numbers (i.e. x + 1 and x - 1) appear in the array.
Return all lonely numbers in nums. You may return the answer in any order.
Example 1:
Input: nums = [10,6,5,8]
Output: [10,8]
Explanation:
- 10 is a lonely number since it appears exactly once and 9 and 11 does not appear in nums.
- 8 is a lonely number since it appears exactly once and 7 and 9 does not appear in nums.
- 5 is not a lonely number since 6 appears in nums and vice versa.
Hence, the lonely numbers in nums are [10, 8].
Note that [8, 10] may also be returned.
Example 2:
Input: nums = [1,3,5,3]
Output: [1,5]
Explanation:
- 1 is a lonely number since it appears exactly once and 0 and 2 does not appear in nums.
- 5 is a lonely number since it appears exactly once and 4 and 6 does not appear in nums.
- 3 is not a lonely number since it appears twice.
Hence, the lonely numbers in nums are [1, 5].
Note that [5, 1] may also be returned.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 106
Solution: Counter
Computer the frequency of each number in the array, for a given number x with freq = 1, check freq of (x – 1) and (x + 1), if both of them are zero then x is lonely.
You are given a 0-indexed integer array nums of even length consisting of an equal number of positive and negative integers.
You should rearrange the elements of nums such that the modified array follows the given conditions:
Every consecutive pair of integers have opposite signs.
For all integers with the same sign, the order in which they were present in nums is preserved.
The rearranged array begins with a positive integer.
Return the modified array after rearranging the elements to satisfy the aforementioned conditions.
Example 1:
Input: nums = [3,1,-2,-5,2,-4]
Output: [3,-2,1,-5,2,-4]
Explanation:
The positive integers in nums are [3,1,2]. The negative integers are [-2,-5,-4].
The only possible way to rearrange them such that they satisfy all conditions is [3,-2,1,-5,2,-4].
Other ways such as [1,-2,2,-5,3,-4], [3,1,2,-2,-5,-4], [-2,3,-5,1,-4,2] are incorrect because they do not satisfy one or more conditions.
Example 2:
Input: nums = [-1,1]
Output: [1,-1]
Explanation:
1 is the only positive integer and -1 the only negative integer in nums.
So nums is rearranged to [1,-1].
Constraints:
2 <= nums.length <= 2 * 105
nums.length is even
1 <= |nums[i]| <= 105
nums consists of equal number of positive and negative integers.
Solution 1: Split and merge
Create two arrays to store positive and negative numbers.
You are given a 0-indexed 2D integer array grid of size m x n that represents a map of the items in a shop. The integers in the grid represent the following:
0 represents a wall that you cannot pass through.
1 represents an empty cell that you can freely move to and from.
All other positive integers represent the price of an item in that cell. You may also freely move to and from these item cells.
It takes 1 step to travel between adjacent grid cells.
You are also given integer arrays pricing and start where pricing = [low, high] and start = [row, col] indicates that you start at the position (row, col) and are interested only in items with a price in the range of [low, high] (inclusive). You are further given an integer k.
You are interested in the positions of the khighest-ranked items whose prices are within the given price range. The rank is determined by the first of these criteria that is different:
Distance, defined as the length of the shortest path from the start (shorter distance has a higher rank).
Price (lower price has a higher rank, but it must be in the price range).
The row number (smaller row number has a higher rank).
The column number (smaller column number has a higher rank).
Return the k highest-ranked items within the price range sorted by their rank (highest to lowest). If there are fewer than k reachable items within the price range, return all of them.
Example 1:
Input: grid = [[1,2,0,1],[1,3,0,1],[0,2,5,1]], pricing = [2,5], start = [0,0], k = 3
Output: [[0,1],[1,1],[2,1]]
Explanation: You start at (0,0).
With a price range of [2,5], we can take items from (0,1), (1,1), (2,1) and (2,2).
The ranks of these items are:
- (0,1) with distance 1
- (1,1) with distance 2
- (2,1) with distance 3
- (2,2) with distance 4
Thus, the 3 highest ranked items in the price range are (0,1), (1,1), and (2,1).
Example 2:
Input: grid = [[1,2,0,1],[1,3,3,1],[0,2,5,1]], pricing = [2,3], start = [2,3], k = 2
Output: [[2,1],[1,2]]
Explanation: You start at (2,3).
With a price range of [2,3], we can take items from (0,1), (1,1), (1,2) and (2,1).
The ranks of these items are:
- (2,1) with distance 2, price 2
- (1,2) with distance 2, price 3
- (1,1) with distance 3
- (0,1) with distance 4
Thus, the 2 highest ranked items in the price range are (2,1) and (1,2).
Example 3:
Input: grid = [[1,1,1],[0,0,1],[2,3,4]], pricing = [2,3], start = [0,0], k = 3
Output: [[2,1],[2,0]]
Explanation: You start at (0,0).
With a price range of [2,3], we can take items from (2,0) and (2,1).
The ranks of these items are:
- (2,1) with distance 5
- (2,0) with distance 6
Thus, the 2 highest ranked items in the price range are (2,1) and (2,0).
Note that k = 3 but there are only 2 reachable items within the price range.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 105
1 <= m * n <= 105
0 <= grid[i][j] <= 105
pricing.length == 2
2 <= low <= high <= 105
start.length == 2
0 <= row <= m - 1
0 <= col <= n - 1
grid[row][col] > 0
1 <= k <= m * n
Solution: BFS + Sorting
Use BFS to collect reachable cells and sort afterwards.
Time complexity: O(mn + KlogK) where K = # of reachable cells.
You are given a 0-indexed array of n integers differences, which describes the differences between each pair of consecutive integers of a hidden sequence of length (n + 1). More formally, call the hidden sequence hidden, then we have that differences[i] = hidden[i + 1] - hidden[i].
You are further given two integers lower and upper that describe the inclusive range of values [lower, upper] that the hidden sequence can contain.
For example, given differences = [1, -3, 4], lower = 1, upper = 6, the hidden sequence is a sequence of length 4 whose elements are in between 1 and 6 (inclusive).
[3, 4, 1, 5] and [4, 5, 2, 6] are possible hidden sequences.
[5, 6, 3, 7] is not possible since it contains an element greater than 6.
[1, 2, 3, 4] is not possible since the differences are not correct.
Return the number of possible hidden sequences there are. If there are no possible sequences, return 0.
You are given a 0-indexed 2D integer array questions where questions[i] = [pointsi, brainpoweri].
The array describes the questions of an exam, where you have to process the questions in order (i.e., starting from question 0) and make a decision whether to solve or skip each question. Solving question i will earn you pointsi points but you will be unable to solve each of the next brainpoweri questions. If you skip question i, you get to make the decision on the next question.
For example, given questions = [[3, 2], [4, 3], [4, 4], [2, 5]]:
If question 0 is solved, you will earn 3 points but you will be unable to solve questions 1 and 2.
If instead, question 0 is skipped and question 1 is solved, you will earn 4 points but you will be unable to solve questions 2 and 3.
Return the maximum points you can earn for the exam.
Example 1:
Input: questions = [[3,2],[4,3],[4,4],[2,5]]
Output: 5
Explanation: The maximum points can be earned by solving questions 0 and 3.
- Solve question 0: Earn 3 points, will be unable to solve the next 2 questions
- Unable to solve questions 1 and 2
- Solve question 3: Earn 2 points
Total points earned: 3 + 2 = 5. There is no other way to earn 5 or more points.
Example 2:
Input: questions = [[1,1],[2,2],[3,3],[4,4],[5,5]]
Output: 7
Explanation: The maximum points can be earned by solving questions 1 and 4.
- Skip question 0
- Solve question 1: Earn 2 points, will be unable to solve the next 2 questions
- Unable to solve questions 2 and 3
- Solve question 4: Earn 5 points
Total points earned: 2 + 5 = 7. There is no other way to earn 7 or more points.