Press "Enter" to skip to content

Posts tagged as “sliding window”

花花酱 LeetCode 2024. Maximize the Confusion of an Exam

数据规模高达5 *104,我们只能使用O(n)的算法了。

可以想到的就是滑动窗口(sliding window),由于最长长度未知,我们可以使用动态滑动窗口。

记录当前滑动窗口中T和F出现的次数,如果其中较少的一个<=k,那么就可以全部替换它,使得整个滑动窗口都变成相同的值。如果这个时候滑动窗口长度大于当前最大长度,我们就把滑动窗口变大,右侧+1,并更新最大长度。否则,减少滑动窗口,左侧-1。

时间复杂度:O(n)
空间复杂度:O(2)

花花酱 LeetCode 2653. Sliding Subarray Beauty

Given an integer array nums containing n integers, find the beauty of each subarray of size k.

The beauty of a subarray is the xth smallest integer in the subarray if it is negative, or 0 if there are fewer than x negative integers.

Return an integer array containing n - k + 1 integers, which denote the beauty of the subarrays in order from the first index in the array.

  • A subarray is a contiguous non-empty sequence of elements within an array.

Example 1:

Input: nums = [1,-1,-3,-2,3], k = 3, x = 2
Output: [-1,-2,-2]
Explanation: There are 3 subarrays with size k = 3. 
The first subarray is [1, -1, -3] and the 2nd smallest negative integer is -1. 
The second subarray is [-1, -3, -2] and the 2nd smallest negative integer is -2. 
The third subarray is [-3, -2, 3] and the 2nd smallest negative integer is -2.

Example 2:

Input: nums = [-1,-2,-3,-4,-5], k = 2, x = 2
Output: [-1,-2,-3,-4]
Explanation: There are 4 subarrays with size k = 2.
For [-1, -2], the 2nd smallest negative integer is -1.
For [-2, -3], the 2nd smallest negative integer is -2.
For [-3, -4], the 2nd smallest negative integer is -3.
For [-4, -5], the 2nd smallest negative integer is -4. 

Example 3:

Input: nums = [-3,1,2,-3,0,-3], k = 2, x = 1
Output: [-3,0,-3,-3,-3]
Explanation: There are 5 subarrays with size k = 2.
For [-3, 1], the 1st smallest negative integer is -3.
For [1, 2], there is no negative integer so the beauty is 0.
For [2, -3], the 1st smallest negative integer is -3.
For [-3, 0], the 1st smallest negative integer is -3.
For [0, -3], the 1st smallest negative integer is -3.

Constraints:

  • n == nums.length 
  • 1 <= n <= 105
  • 1 <= k <= n
  • 1 <= x <= k 
  • -50 <= nums[i] <= 50 

Solution: Sliding Window + Counter

Since the range of nums are very small (-50 ~ 50), we can use a counter to track the frequency of each element, s.t. we can find the k-the smallest element in O(50) instead of O(k).

Time complexity: O((n – k + 1) * 50)
Space complexity: O(50)

C++

花花酱 LeetCode 2156. Find Substring With Given Hash Value

The hash of a 0-indexed string s of length k, given integers p and m, is computed using the following function:

  • hash(s, p, m) = (val(s[0]) * p0 + val(s[1]) * p1 + ... + val(s[k-1]) * pk-1) mod m.

Where val(s[i]) represents the index of s[i] in the alphabet from val('a') = 1 to val('z') = 26.

You are given a string s and the integers powermodulok, and hashValue. Return sub, the first substring of s of length k such that hash(sub, power, modulo) == hashValue.

The test cases will be generated such that an answer always exists.

substring is a contiguous non-empty sequence of characters within a string.

Example 1:

Input: s = "leetcode", power = 7, modulo = 20, k = 2, hashValue = 0
Output: "ee"
Explanation: The hash of "ee" can be computed to be hash("ee", 7, 20) = (5 * 1 + 5 * 7) mod 20 = 40 mod 20 = 0. 
"ee" is the first substring of length 2 with hashValue 0. Hence, we return "ee".

Example 2:

Input: s = "fbxzaad", power = 31, modulo = 100, k = 3, hashValue = 32
Output: "fbx"
Explanation: The hash of "fbx" can be computed to be hash("fbx", 31, 100) = (6 * 1 + 2 * 31 + 24 * 312) mod 100 = 23132 mod 100 = 32. 
The hash of "bxz" can be computed to be hash("bxz", 31, 100) = (2 * 1 + 24 * 31 + 26 * 312) mod 100 = 25732 mod 100 = 32. 
"fbx" is the first substring of length 3 with hashValue 32. Hence, we return "fbx".
Note that "bxz" also has a hash of 32 but it appears later than "fbx".

Constraints:

  • 1 <= k <= s.length <= 2 * 104
  • 1 <= power, modulo <= 109
  • 0 <= hashValue < modulo
  • s consists of lowercase English letters only.
  • The test cases are generated such that an answer always exists.

Solution: Sliding window

hash = (((hash – (s[i+k] * pk-1) % mod + mod) * p) + (s[i] * p0)) % mod

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2134. Minimum Swaps to Group All 1’s Together II

swap is defined as taking two distinct positions in an array and swapping the values in them.

circular array is defined as an array where we consider the first element and the last element to be adjacent.

Given a binary circular array nums, return the minimum number of swaps required to group all 1‘s present in the array together at any location.

Example 1:

Input: nums = [0,1,0,1,1,0,0]
Output: 1
Explanation: Here are a few of the ways to group all the 1's together:
[0,0,1,1,1,0,0] using 1 swap.
[0,1,1,1,0,0,0] using 1 swap.
[1,1,0,0,0,0,1] using 2 swaps (using the circular property of the array).
There is no way to group all 1's together with 0 swaps.
Thus, the minimum number of swaps required is 1.

Example 2:

Input: nums = [0,1,1,1,0,0,1,1,0]
Output: 2
Explanation: Here are a few of the ways to group all the 1's together:
[1,1,1,0,0,0,0,1,1] using 2 swaps (using the circular property of the array).
[1,1,1,1,1,0,0,0,0] using 2 swaps.
There is no way to group all 1's together with 0 or 1 swaps.
Thus, the minimum number of swaps required is 2.

Example 3:

Input: nums = [1,1,0,0,1]
Output: 0
Explanation: All the 1's are already grouped together due to the circular property of the array.
Thus, the minimum number of swaps required is 0.

Constraints:

  • 1 <= nums.length <= 105
  • nums[i] is either 0 or 1.

Solution: Sliding Window

Step 1: Count how many ones are there in the array. Assume it’s K.
Step 2: For each window of size k, count how many ones in the window, we have to swap 0s out with 1s to fill the window. ans = min(ans, k – ones).

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1984. Minimum Difference Between Highest and Lowest of K Scores

You are given a 0-indexed integer array nums, where nums[i] represents the score of the ith student. You are also given an integer k.

Pick the scores of any k students from the array so that the difference between the highest and the lowest of the k scores is minimized.

Return the minimum possible difference.

Example 1:

Input: nums = [90], k = 1
Output: 0
Explanation: There is one way to pick score(s) of one student:
- [90]. The difference between the highest and lowest score is 90 - 90 = 0.
The minimum possible difference is 0.

Example 2:

Input: nums = [9,4,1,7], k = 2
Output: 2
Explanation: There are six ways to pick score(s) of two students:
- [9,4,1,7]. The difference between the highest and lowest score is 9 - 4 = 5.
- [9,4,1,7]. The difference between the highest and lowest score is 9 - 1 = 8.
- [9,4,1,7]. The difference between the highest and lowest score is 9 - 7 = 2.
- [9,4,1,7]. The difference between the highest and lowest score is 4 - 1 = 3.
- [9,4,1,7]. The difference between the highest and lowest score is 7 - 4 = 3.
- [9,4,1,7]. The difference between the highest and lowest score is 7 - 1 = 6.
The minimum possible difference is 2.

Constraints:

  • 1 <= k <= nums.length <= 1000
  • 0 <= nums[i] <= 105

Solution: Sliding Window

Sort the array, to minimize the difference, k numbers must be consecutive (i.e, from a subarray). We use a sliding window size of k and try all possible subarrays.
Ans = min{(nums[k – 1] – nums[0]), (nums[k] – nums[1]), … (nums[n – 1] – nums[n – k])}

Time complexity: O(nlogn)
Space complexity: O(1)

C++