Press "Enter" to skip to content

Posts tagged as “string”

花花酱 LeetCode 2075. Decode the Slanted Ciphertext

A string originalText is encoded using a slanted transposition cipher to a string encodedText with the help of a matrix having a fixed number of rows rows.

originalText is placed first in a top-left to bottom-right manner.

The blue cells are filled first, followed by the red cells, then the yellow cells, and so on, until we reach the end of originalText. The arrow indicates the order in which the cells are filled. All empty cells are filled with ' '. The number of columns is chosen such that the rightmost column will not be empty after filling in originalText.

encodedText is then formed by appending all characters of the matrix in a row-wise fashion.

The characters in the blue cells are appended first to encodedText, then the red cells, and so on, and finally the yellow cells. The arrow indicates the order in which the cells are accessed.

For example, if originalText = "cipher" and rows = 3, then we encode it in the following manner:

The blue arrows depict how originalText is placed in the matrix, and the red arrows denote the order in which encodedText is formed. In the above example, encodedText = "ch ie pr".

Given the encoded string encodedText and number of rows rows, return the original string originalText.

Note: originalText does not have any trailing spaces ' '. The test cases are generated such that there is only one possible originalText.

Example 1:

Input: encodedText = "ch   ie   pr", rows = 3
Output: "cipher"
Explanation: This is the same example described in the problem description.

Example 2:

Input: encodedText = "iveo    eed   l te   olc", rows = 4
Output: "i love leetcode"
Explanation: The figure above denotes the matrix that was used to encode originalText. 
The blue arrows show how we can find originalText from encodedText.

Example 3:

Input: encodedText = "coding", rows = 1
Output: "coding"
Explanation: Since there is only 1 row, both originalText and encodedText are the same.

Example 4:

Input: encodedText = " b  ac", rows = 2
Output: " abc"
Explanation: originalText cannot have trailing spaces, but it may be preceded by one or more spaces.

Constraints:

  • 0 <= encodedText.length <= 106
  • encodedText consists of lowercase English letters and ' ' only.
  • encodedText is a valid encoding of some originalText that does not have trailing spaces.
  • 1 <= rows <= 1000
  • The testcases are generated such that there is only one possible originalText.

Solution: Simulation

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 2068. Check Whether Two Strings are Almost Equivalent

Two strings word1 and word2 are considered almost equivalent if the differences between the frequencies of each letter from 'a' to 'z' between word1 and word2 is at most 3.

Given two strings word1 and word2, each of length n, return true if word1 and word2 are almost equivalent, or false otherwise.

The frequency of a letter x is the number of times it occurs in the string.

Example 1:

Input: word1 = "aaaa", word2 = "bccb"
Output: false
Explanation: There are 4 'a's in "aaaa" but 0 'a's in "bccb".
The difference is 4, which is more than the allowed 3.

Example 2:

Input: word1 = "abcdeef", word2 = "abaaacc"
Output: true
Explanation: The differences between the frequencies of each letter in word1 and word2 are at most 3:
- 'a' appears 1 time in word1 and 4 times in word2. The difference is 3.
- 'b' appears 1 time in word1 and 1 time in word2. The difference is 0.
- 'c' appears 1 time in word1 and 2 times in word2. The difference is 1.
- 'd' appears 1 time in word1 and 0 times in word2. The difference is 1.
- 'e' appears 2 times in word1 and 0 times in word2. The difference is 2.
- 'f' appears 1 time in word1 and 0 times in word2. The difference is 1.

Example 3:

Input: word1 = "cccddabba", word2 = "babababab"
Output: true
Explanation: The differences between the frequencies of each letter in word1 and word2 are at most 3:
- 'a' appears 2 times in word1 and 4 times in word2. The difference is 2.
- 'b' appears 2 times in word1 and 5 times in word2. The difference is 3.
- 'c' appears 3 times in word1 and 0 times in word2. The difference is 3.
- 'd' appears 2 times in word1 and 0 times in word2. The difference is 2.

Constraints:

  • n == word1.length == word2.length
  • 1 <= n <= 100
  • word1 and word2 consist only of lowercase English letters.

Solution: Hashtable

Use a hashtable to track the relative frequency of a letter.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2063. Vowels of All Substrings

Given a string word, return the sum of the number of vowels ('a''e', 'i', 'o', and 'u') in every substring of word.

substring is a contiguous (non-empty) sequence of characters within a string.

Note: Due to the large constraints, the answer may not fit in a signed 32-bit integer. Please be careful during the calculations.

Example 1:

Input: word = "aba"
Output: 6
Explanation: 
All possible substrings are: "a", "ab", "aba", "b", "ba", and "a".
- "b" has 0 vowels in it
- "a", "ab", "ba", and "a" have 1 vowel each
- "aba" has 2 vowels in it
Hence, the total sum of vowels = 0 + 1 + 1 + 1 + 1 + 2 = 6. 

Example 2:

Input: word = "abc"
Output: 3
Explanation: 
All possible substrings are: "a", "ab", "abc", "b", "bc", and "c".
- "a", "ab", and "abc" have 1 vowel each
- "b", "bc", and "c" have 0 vowels each
Hence, the total sum of vowels = 1 + 1 + 1 + 0 + 0 + 0 = 3. 

Example 3:

Input: word = "ltcd"
Output: 0
Explanation: There are no vowels in any substring of "ltcd".

Example 4:

Input: word = "noosabasboosa"
Output: 237
Explanation: There are a total of 237 vowels in all the substrings.

Constraints:

  • 1 <= word.length <= 105
  • word consists of lowercase English letters.

Solution: Math

For a vowel at index i,
we can choose 0, 1, … i as starting point
choose i, i+1, …, n -1 as end point.
There will be (i – 0 + 1) * (n – 1 – i + 1) possible substrings that contains word[i].

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2062. Count Vowel Substrings of a String

substring is a contiguous (non-empty) sequence of characters within a string.

vowel substring is a substring that only consists of vowels ('a''e''i''o', and 'u') and has all five vowels present in it.

Given a string word, return the number of vowel substrings in word.

Example 1:

Input: word = "aeiouu"
Output: 2
Explanation: The vowel substrings of word are as follows (underlined):
- "aeiouu"
- "aeiouu"

Example 2:

Input: word = "unicornarihan"
Output: 0
Explanation: Not all 5 vowels are present, so there are no vowel substrings.

Example 3:

Input: word = "cuaieuouac"
Output: 7
Explanation: The vowel substrings of word are as follows (underlined):
- "cuaieuouac"
- "cuaieuouac"
- "cuaieuouac"
- "cuaieuouac"
- "cuaieuouac"
- "cuaieuouac"
- "cuaieuouac"

Example 4:

Input: word = "bbaeixoubb"
Output: 0
Explanation: The only substrings that contain all five vowels also contain consonants, so there are no vowel substrings.

Constraints:

  • 1 <= word.length <= 100
  • word consists of lowercase English letters only.

Solution 1: Brute Force

Time complexity: O(n2)
Space complexity: O(1)

C++

Solution 2: Sliding Window / Three Pointers

Maintain a window [i, j] that contain all 5 vowels, find k s.t. [k + 1, i] no longer container 5 vowels.
# of valid substrings end with j will be (k – i).

##aeiouaeioo##
..i....k...j..
i = 3, k = 8, j = 12

Valid substrings are:
aeiouaeioo
.eiouaeioo
..iouaeioo
...ouaeioo
....uaeioo

8 – 3 = 5

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2053. Kth Distinct String in an Array

distinct string is a string that is present only once in an array.

Given an array of strings arr, and an integer k, return the kth distinct string present in arr. If there are fewer than k distinct strings, return an empty string "".

Note that the strings are considered in the order in which they appear in the array.

Example 1:

Input: arr = ["d","b","c","b","c","a"], k = 2
Output: "a"
Explanation:
The only distinct strings in arr are "d" and "a".
"d" appears 1st, so it is the 1st distinct string.
"a" appears 2nd, so it is the 2nd distinct string.
Since k == 2, "a" is returned. 

Example 2:

Input: arr = ["aaa","aa","a"], k = 1
Output: "aaa"
Explanation:
All strings in arr are distinct, so the 1st string "aaa" is returned.

Example 3:

Input: arr = ["a","b","a"], k = 3
Output: ""
Explanation:
The only distinct string is "b". Since there are fewer than 3 distinct strings, we return an empty string "".

Constraints:

  • 1 <= k <= arr.length <= 1000
  • 1 <= arr[i].length <= 5
  • arr[i] consists of lowercase English letters.

Solution: Hashtable

Time complexity: O(n)
Space complexity: O(n)

C++