Press "Enter" to skip to content

Posts tagged as “string”

花花酱 LeetCode 1957. Delete Characters to Make Fancy String

fancy string is a string where no three consecutive characters are equal.

Given a string s, delete the minimum possible number of characters from s to make it fancy.

Return the final string after the deletion. It can be shown that the answer will always be unique.

Example 1:

Input: s = "leeetcode"
Output: "leetcode"
Explanation:
Remove an 'e' from the first group of 'e's to create "leetcode".
No three consecutive characters are equal, so return "leetcode".

Example 2:

Input: s = "aaabaaaa"
Output: "aabaa"
Explanation:
Remove an 'a' from the first group of 'a's to create "aabaaaa".
Remove two 'a's from the second group of 'a's to create "aabaa".
No three consecutive characters are equal, so return "aabaa".

Example 3:

Input: s = "aab"
Output: "aab"
Explanation: No three consecutive characters are equal, so return "aab".

Constraints:

  • 1 <= s.length <= 105
  • s consists only of lowercase English letters.

Solution:

Skip the current letter if there are already two same letters in the output string.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1945. Sum of Digits of String After Convert

You are given a string s consisting of lowercase English letters, and an integer k.

First, convert s into an integer by replacing each letter with its position in the alphabet (i.e., replace 'a' with 1'b' with 2, …, 'z' with 26). Then, transform the integer by replacing it with the sum of its digits. Repeat the transform operation k times in total.

For example, if s = "zbax" and k = 2, then the resulting integer would be 8 by the following operations:

  • Convert"zbax" ➝ "(26)(2)(1)(24)" ➝ "262124" ➝ 262124
  • Transform #1262124 ➝ 2 + 6 + 2 + 1 + 2 + 4 ➝ 17
  • Transform #217 ➝ 1 + 7 ➝ 8

Return the resulting integer after performing the operations described above.

Example 1:

Input: s = "iiii", k = 1
Output: 36
Explanation: The operations are as follows:
- Convert: "iiii" ➝ "(9)(9)(9)(9)" ➝ "9999" ➝ 9999
- Transform #1: 9999 ➝ 9 + 9 + 9 + 9 ➝ 36
Thus the resulting integer is 36.

Example 2:

Input: s = "leetcode", k = 2
Output: 6
Explanation: The operations are as follows:
- Convert: "leetcode" ➝ "(12)(5)(5)(20)(3)(15)(4)(5)" ➝ "12552031545" ➝ 12552031545
- Transform #1: 12552031545 ➝ 1 + 2 + 5 + 5 + 2 + 0 + 3 + 1 + 5 + 4 + 5 ➝ 33
- Transform #2: 33 ➝ 3 + 3 ➝ 6
Thus the resulting integer is 6.

Example 3:

Input: s = "zbax", k = 2
Output: 8

Constraints:

  • 1 <= s.length <= 100
  • 1 <= k <= 10
  • s consists of lowercase English letters.

Solution: Simulation

Time complexity: O(klogn)
Space complexity: O(1)

C++

花花酱 LeetCode 1941. Check if All Characters Have Equal Number of Occurrences

Given a string s, return true if s is a good string, or false otherwise.

A string s is good if all the characters that appear in s have the same number of occurrences (i.e., the same frequency).

Example 1:

Input: s = "abacbc"
Output: true
Explanation: The characters that appear in s are 'a', 'b', and 'c'. All characters occur 2 times in s.

Example 2:

Input: s = "aaabb"
Output: false
Explanation: The characters that appear in s are 'a' and 'b'.
'a' occurs 3 times while 'b' occurs 2 times, which is not the same number of times.

Constraints:

  • 1 <= s.length <= 1000
  • s consists of lowercase English letters.

Solution: Hashtable

Time complexity: O(n)
Space complexity: O(1)

C++

Python3

花花酱 LeetCode 1935. Maximum Number of Words You Can Type

There is a malfunctioning keyboard where some letter keys do not work. All other keys on the keyboard work properly.

Given a string text of words separated by a single space (no leading or trailing spaces) and a string brokenLetters of all distinct letter keys that are broken, return the number of words in text you can fully type using this keyboard.

Example 1:

Input: text = "hello world", brokenLetters = "ad"
Output: 1
Explanation: We cannot type "world" because the 'd' key is broken.

Example 2:

Input: text = "leet code", brokenLetters = "lt"
Output: 1
Explanation: We cannot type "leet" because the 'l' and 't' keys are broken.

Example 3:

Input: text = "leet code", brokenLetters = "e"
Output: 0
Explanation: We cannot type either word because the 'e' key is broken.

Constraints:

  • 1 <= text.length <= 104
  • 0 <= brokenLetters.length <= 26
  • text consists of words separated by a single space without any leading or trailing spaces.
  • Each word only consists of lowercase English letters.
  • brokenLetters consists of distinct lowercase English letters.

Solution: Hashset / bitset

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1930. Unique Length-3 Palindromic Subsequences

Given a string s, return the number of unique palindromes of length three that are a subsequence of s.

Note that even if there are multiple ways to obtain the same subsequence, it is still only counted once.

palindrome is a string that reads the same forwards and backwards.

subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

  • For example, "ace" is a subsequence of "abcde".

Example 1:

Input: s = "aabca"
Output: 3
Explanation: The 3 palindromic subsequences of length 3 are:
- "aba" (subsequence of "aabca")
- "aaa" (subsequence of "aabca")
- "aca" (subsequence of "aabca")

Example 2:

Input: s = "adc"
Output: 0
Explanation: There are no palindromic subsequences of length 3 in "adc".

Example 3:

Input: s = "bbcbaba"
Output: 4
Explanation: The 4 palindromic subsequences of length 3 are:
- "bbb" (subsequence of "bbcbaba")
- "bcb" (subsequence of "bbcbaba")
- "bab" (subsequence of "bbcbaba")
- "aba" (subsequence of "bbcbaba")

Constraints:

  • 3 <= s.length <= 105
  • s consists of only lowercase English letters.

Solution: Enumerate first character of a palindrome

For a length 3 palindrome, we just need to enumerate the first character c.
We found the first and last occurrence of c in original string and scan the middle part to see how many unique characters there.

e.g. aabca
Enumerate from a to z, looking for a*a, b*b, …, z*z.
For a*a, aabca, we found first and last a, in between is abc, which has 3 unique letters.
We can use a hastable or a bitset to track unique letters.

Time complexity: O(26*n)
Space complexity: O(1)

C++