You are given an integer array nums and two integers limit and goal. The array nums has an interesting property that abs(nums[i]) <= limit.
Return the minimum number of elements you need to add to make the sum of the array equal to goal. The array must maintain its property that abs(nums[i]) <= limit.
Note that abs(x) equals x if x >= 0, and -x otherwise.
Example 1:
Input: nums = [1,-1,1], limit = 3, goal = -4 Output: 2 Explanation: You can add -2 and -3, then the sum of the array will be 1 - 1 + 1 - 2 - 3 = -4.
Example 2:
Input: nums = [1,-10,9,1], limit = 100, goal = 0 Output: 1
Constraints:
1 <= nums.length <= 1051 <= limit <= 106-limit <= nums[i] <= limit-109 <= goal <= 109
Solution: Math
Time complexity: O(n)
Space complexity: O(1)
Compute the diff = abs(sum(nums) – goal)
ans = (diff + limit – 1)) / limit
C++
|
1 2 3 4 5 6 7 8 9 |
// Author: Huahua class Solution { public: int minElements(vector<int>& nums, int limit, int goal) { int64_t diff = abs(goal - accumulate(begin(nums), end(nums), 0LL)); return (diff + limit - 1) / limit; } }; |
请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。
如果您喜欢这篇文章/视频,欢迎您捐赠花花。
If you like my articles / videos, donations are welcome.


Be First to Comment