Given a rows x cols matrix mat, where mat[i][j] is either 0 or 1, return the number of special positions in mat.

A position (i,j) is called special if mat[i][j] == 1 and all other elements in row i and column j are 0 (rows and columns are 0-indexed).

Example 1:

Input: mat = [[1,0,0],
[0,0,1],
[1,0,0]]
Output: 1
Explanation: (1,2) is a special position because mat == 1 and all other elements in row 1 and column 2 are 0.


Example 2:

Input: mat = [[1,0,0],
[0,1,0],
[0,0,1]]
Output: 3
Explanation: (0,0), (1,1) and (2,2) are special positions.


Example 3:

Input: mat = [[0,0,0,1],
[1,0,0,0],
[0,1,1,0],
[0,0,0,0]]
Output: 2


Example 4:

Input: mat = [[0,0,0,0,0],
[1,0,0,0,0],
[0,1,0,0,0],
[0,0,1,0,0],
[0,0,0,1,1]]
Output: 3


Constraints:

• rows == mat.length
• cols == mat[i].length
• 1 <= rows, cols <= 100
• mat[i][j] is 0 or 1.

## Solution: Sum for each row and column

Brute force:
Time complexity: O(R*C*(R+C))
Space complexity: O(1)

We can pre-compute the sums for each row and each column, ans = sum(mat[r][c] == 1 and rsum[r] == 1 and csum[c] == 1)

Time complexity: O(R*C)
Space complexity: O(R+C)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website 