# Problem

On a table are N cards, with a positive integer printed on the front and back of each card (possibly different).

We flip any number of cards, and after we choose one card.

If the number X on the back of the chosen card is not on the front of any card, then this number X is good.

What is the smallest number that is good?  If no number is good, output 0.

Here, fronts[i] and backs[i] represent the number on the front and back of card i.

A flip swaps the front and back numbers, so the value on the front is now on the back and vice versa.

Example:

Input: fronts = [1,2,4,4,7], backs = [1,3,4,1,3]
Output: 2
Explanation: If we flip the second card, the fronts are [1,3,4,4,7] and the backs are [1,2,4,1,3]. We choose the second card, which has number 2 on the back, and it isn't on the front of any card, so 2 is good.

Note:

1. 1 <= fronts.length == backs.length <= 1000.
2. 1 <= fronts[i] <= 2000.
3. 1 <= backs[i] <= 2000.

C++

# Problem

In a 2 dimensional array grid, each value grid[i][j] represents the height of a building located there. We are allowed to increase the height of any number of buildings, by any amount (the amounts can be different for different buildings). Height 0 is considered to be a building as well.

At the end, the “skyline” when viewed from all four directions of the grid, i.e. top, bottom, left, and right, must be the same as the skyline of the original grid. A city’s skyline is the outer contour of the rectangles formed by all the buildings when viewed from a distance. See the following example.

What is the maximum total sum that the height of the buildings can be increased?

Example:
Input: grid = [[3,0,8,4],[2,4,5,7],[9,2,6,3],[0,3,1,0]]
Output: 35
Explanation:
The grid is:
[ [3, 0, 8, 4],
[2, 4, 5, 7],
[9, 2, 6, 3],
[0, 3, 1, 0] ]

The skyline viewed from top or bottom is: [9, 4, 8, 7]
The skyline viewed from left or right is: [8, 7, 9, 3]

The grid after increasing the height of buildings without affecting skylines is:

gridNew = [ [8, 4, 8, 7],
[7, 4, 7, 7],
[9, 4, 8, 7],
[3, 3, 3, 3] ]



Notes:

• 1 < grid.length = grid[0].length <= 50.
• All heights grid[i][j] are in the range [0, 100].
• All buildings in grid[i][j] occupy the entire grid cell: that is, they are a 1 x 1 x grid[i][j] rectangular prism.

# Solution: Greedy

Find the max of each row and column, increase the height of building at i,j to min(max_row[i], max_col[j]).

Time Complexity: O(m*n)

Space complexity: O(m+n)

C++

Given an integer array with even length, where different numbers in this array represent different kinds of candies. Each number means one candy of the corresponding kind. You need to distribute these candies equally in number to brother and sister. Return the maximum number of kinds of candies the sister could gain.

Example 1:

Example 2:

Note:

1. The length of the given array is in range [2, 10,000], and will be even.
2. The number in given array is in range [-100,000, 100,000].

Solution 1: Greedy

Give all unique candies to sisters until they have n/2 candies.

Time complexity: O(n)

Space complexity: O(n)

C++ Hashset

C++ Bitset

Given a string S, you are allowed to convert it to a palindrome by adding characters in front of it. Find and return the shortest palindrome you can find by performing this transformation.

For example:

Given "aacecaaa", return "aaacecaaa".

Given "abcd", return "dcbabcd".

Solution 1: Brute Force

Time complexity: O(n^2)

Space complexity: O(n)

C++ w/ copy

C++ w/o copy

Problem:

A string S of lowercase letters is given. We want to partition this string into as many parts as possible so that each letter appears in at most one part, and return a list of integers representing the size of these parts.

Example 1:

Solution 0: Brute Force

Time complexity: O(n^2)

Space complexity: O(1)

C++

Python

Solution 1: Greedy

Time complexity: O(n)

Space complexity: O(26/128)

C++

Java

Python3