Press "Enter" to skip to content

Posts published in “Greedy”

花花酱 LeetCode 2126. Destroying Asteroids

You are given an integer mass, which represents the original mass of a planet. You are further given an integer array asteroids, where asteroids[i] is the mass of the ith asteroid.

You can arrange for the planet to collide with the asteroids in any arbitrary order. If the mass of the planet is greater than or equal to the mass of the asteroid, the asteroid is destroyed and the planet gains the mass of the asteroid. Otherwise, the planet is destroyed.

Return true if all asteroids can be destroyed. Otherwise, return false.

Example 1:

Input: mass = 10, asteroids = [3,9,19,5,21]
Output: true
Explanation: One way to order the asteroids is [9,19,5,3,21]:
- The planet collides with the asteroid with a mass of 9. New planet mass: 10 + 9 = 19
- The planet collides with the asteroid with a mass of 19. New planet mass: 19 + 19 = 38
- The planet collides with the asteroid with a mass of 5. New planet mass: 38 + 5 = 43
- The planet collides with the asteroid with a mass of 3. New planet mass: 43 + 3 = 46
- The planet collides with the asteroid with a mass of 21. New planet mass: 46 + 21 = 67
All asteroids are destroyed.

Example 2:

Input: mass = 5, asteroids = [4,9,23,4]
Output: false
Explanation: 
The planet cannot ever gain enough mass to destroy the asteroid with a mass of 23.
After the planet destroys the other asteroids, it will have a mass of 5 + 4 + 9 + 4 = 22.
This is less than 23, so a collision would not destroy the last asteroid.

Constraints:

  • 1 <= mass <= 105
  • 1 <= asteroids.length <= 105
  • 1 <= asteroids[i] <= 105

Solution: Greedy

Sort asteroids by weight. Note, mass can be very big (105*105), for C++/Java, use long instead of int.

Time complexity: O(nlogn)
Space complexity: O(1)

C++

花花酱 LeetCode 1962. Remove Stones to Minimize the Total

You are given a 0-indexed integer array piles, where piles[i] represents the number of stones in the ith pile, and an integer k. You should apply the following operation exactly k times:

  • Choose any piles[i] and remove floor(piles[i] / 2) stones from it.

Notice that you can apply the operation on the same pile more than once.

Return the minimum possible total number of stones remaining after applying the k operations.

floor(x) is the greatest integer that is smaller than or equal to x (i.e., rounds x down).

Example 1:

Input: piles = [5,4,9], k = 2
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [5,4,5].
- Apply the operation on pile 0. The resulting piles are [3,4,5].
The total number of stones in [3,4,5] is 12.

Example 2:

Input: piles = [4,3,6,7], k = 3
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [4,3,3,7].
- Apply the operation on pile 3. The resulting piles are [4,3,3,4].
- Apply the operation on pile 0. The resulting piles are [2,3,3,4].
The total number of stones in [2,3,3,4] is 12.

Constraints:

  • 1 <= piles.length <= 105
  • 1 <= piles[i] <= 104
  • 1 <= k <= 105

Solution: Greedy / Heap

Always choose the largest pile to remove.

Time complexity: O(n + klogn)
Space complexity: O(n)

C++

花花酱 LeetCode 1946. Largest Number After Mutating Substring

You are given a string num, which represents a large integer. You are also given a 0-indexed integer array change of length 10 that maps each digit 0-9 to another digit. More formally, digit d maps to digit change[d].

You may choose to mutate a single substring of num. To mutate a substring, replace each digit num[i] with the digit it maps to in change (i.e. replace num[i] with change[num[i]]).

Return a string representing the largest possible integer after mutating (or choosing not to) a single substring of num.

substring is a contiguous sequence of characters within the string.

Example 1:

Input: num = "132", change = [9,8,5,0,3,6,4,2,6,8]
Output: "832"
Explanation: Replace the substring "1":
- 1 maps to change[1] = 8.
Thus, "132" becomes "832".
"832" is the largest number that can be created, so return it.

Example 2:

Input: num = "021", change = [9,4,3,5,7,2,1,9,0,6]
Output: "934"
Explanation: Replace the substring "021":
- 0 maps to change[0] = 9.
- 2 maps to change[2] = 3.
- 1 maps to change[1] = 4.
Thus, "021" becomes "934".
"934" is the largest number that can be created, so return it.

Example 3:

Input: num = "5", change = [1,4,7,5,3,2,5,6,9,4]
Output: "5"
Explanation: "5" is already the largest number that can be created, so return it.

Constraints:

  • 1 <= num.length <= 105
  • num consists of only digits 0-9.
  • change.length == 10
  • 0 <= change[d] <= 9

Solution: Greedy

Find the first digit that is less equal to the mutated one as the start of the substring, keep replacing as long as mutated >= current.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1921. Eliminate Maximum Number of Monsters

You are playing a video game where you are defending your city from a group of n monsters. You are given a 0-indexed integer array dist of size n, where dist[i] is the initial distance in kilometers of the ith monster from the city.

The monsters walk toward the city at a constant speed. The speed of each monster is given to you in an integer array speed of size n, where speed[i] is the speed of the ith monster in kilometers per minute.

You have a weapon that, once fully charged, can eliminate a single monster. However, the weapon takes one minute to charge.The weapon is fully charged at the very start.

You lose when any monster reaches your city. If a monster reaches the city at the exact moment the weapon is fully charged, it counts as a loss, and the game ends before you can use your weapon.

Return the maximum number of monsters that you can eliminate before you lose, or n if you can eliminate all the monsters before they reach the city.

Example 1:

Input: dist = [1,3,4], speed = [1,1,1]
Output: 3
Explanation:
In the beginning, the distances of the monsters are [1,3,4]. You eliminate the first monster.
After a minute, the distances of the monsters are [X,2,3]. You eliminate the second monster.
After a minute, the distances of the monsters are [X,X,2]. You eliminate the thrid monster.
All 3 monsters can be eliminated.

Example 2:

Input: dist = [1,1,2,3], speed = [1,1,1,1]
Output: 1
Explanation:
In the beginning, the distances of the monsters are [1,1,2,3]. You eliminate the first monster.
After a minute, the distances of the monsters are [X,0,1,2], so you lose.
You can only eliminate 1 monster.

Example 3:

Input: dist = [3,2,4], speed = [5,3,2]
Output: 1
Explanation:
In the beginning, the distances of the monsters are [3,2,4]. You eliminate the first monster.
After a minute, the distances of the monsters are [X,0,2], so you lose.
You can only eliminate 1 monster.

Constraints:

  • n == dist.length == speed.length
  • 1 <= n <= 105
  • 1 <= dist[i], speed[i] <= 105

Solution: Greedy

Sort by arrival time, and see how many we can eliminate.

Time complexity: O(nlogn)
Space complexity: O(n)

C++

花花酱 LeetCode 1913. Maximum Product Difference Between Two Pairs

The product difference between two pairs (a, b) and (c, d) is defined as (a * b) - (c * d).

  • For example, the product difference between (5, 6) and (2, 7) is (5 * 6) - (2 * 7) = 16.

Given an integer array nums, choose four distinct indices wxy, and z such that the product difference between pairs (nums[w], nums[x]) and (nums[y], nums[z]) is maximized.

Return the maximum such product difference.

Example 1:

Input: nums = [5,6,2,7,4]
Output: 34
Explanation: We can choose indices 1 and 3 for the first pair (6, 7) and indices 2 and 4 for the second pair (2, 4).
The product difference is (6 * 7) - (2 * 4) = 34.

Example 2:

Input: nums = [4,2,5,9,7,4,8]
Output: 64
Explanation: We can choose indices 3 and 6 for the first pair (9, 8) and indices 1 and 5 for the second pair (2, 4).
The product difference is (9 * 8) - (2 * 4) = 64.

Constraints:

  • 4 <= nums.length <= 104
  • 1 <= nums[i] <= 104

Solution: Greedy

Since all the numbers are positive, we just need to find the largest two numbers as the first pair and smallest two numbers are the second pair.

Time complexity: O(nlogn) / sorting, O(n) / finding min/max elements.
Space complexity: O(1)

C++

Python3