You are given a 0-indexed integer array piles, where piles[i] represents the number of stones in the ith pile, and an integer k. You should apply the following operation exactly k times:

• Choose any piles[i] and remove floor(piles[i] / 2) stones from it.

Notice that you can apply the operation on the same pile more than once.

Return the minimum possible total number of stones remaining after applying the k operations.

floor(x) is the greatest integer that is smaller than or equal to x (i.e., rounds x down).

Example 1:

Input: piles = [5,4,9], k = 2
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [5,4,5].
- Apply the operation on pile 0. The resulting piles are [3,4,5].
The total number of stones in [3,4,5] is 12.


Example 2:

Input: piles = [4,3,6,7], k = 3
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [4,3,3,7].
- Apply the operation on pile 3. The resulting piles are [4,3,3,4].
- Apply the operation on pile 0. The resulting piles are [2,3,3,4].
The total number of stones in [2,3,3,4] is 12.


Constraints:

• 1 <= piles.length <= 105
• 1 <= piles[i] <= 104
• 1 <= k <= 105

## Solution: Greedy / Heap

Always choose the largest pile to remove.

Time complexity: O(n + klogn)
Space complexity: O(n)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website 