Press "Enter" to skip to content

Posts published in “Hashtable”

花花酱 LeetCode 1797. Design Authentication Manager

There is an authentication system that works with authentication tokens. For each session, the user will receive a new authentication token that will expire timeToLive seconds after the currentTime. If the token is renewed, the expiry time will be extended to expire timeToLive seconds after the (potentially different) currentTime.

Implement the AuthenticationManager class:

  • AuthenticationManager(int timeToLive) constructs the AuthenticationManager and sets the timeToLive.
  • generate(string tokenId, int currentTime) generates a new token with the given tokenId at the given currentTime in seconds.
  • renew(string tokenId, int currentTime) renews the unexpired token with the given tokenId at the given currentTime in seconds. If there are no unexpired tokens with the given tokenId, the request is ignored, and nothing happens.
  • countUnexpiredTokens(int currentTime) returns the number of unexpired tokens at the given currentTime.

Note that if a token expires at time t, and another action happens on time t (renew or countUnexpiredTokens), the expiration takes place before the other actions.

Example 1:

Input
["AuthenticationManager", "renew", "generate", "countUnexpiredTokens", "generate", "renew", "renew", "countUnexpiredTokens"]
[[5], ["aaa", 1], ["aaa", 2], [6], ["bbb", 7], ["aaa", 8], ["bbb", 10], [15]]
Output
[null, null, null, 1, null, null, null, 0]

Explanation AuthenticationManager authenticationManager = new AuthenticationManager(5); // Constructs the AuthenticationManager with timeToLive = 5 seconds. authenticationManager.renew(“aaa”, 1); // No token exists with tokenId “aaa” at time 1, so nothing happens. authenticationManager.generate(“aaa”, 2); // Generates a new token with tokenId “aaa” at time 2. authenticationManager.countUnexpiredTokens(6); // The token with tokenId “aaa” is the only unexpired one at time 6, so return 1. authenticationManager.generate(“bbb”, 7); // Generates a new token with tokenId “bbb” at time 7. authenticationManager.renew(“aaa”, 8); // The token with tokenId “aaa” expired at time 7, and 8 >= 7, so at time 8 the renew request is ignored, and nothing happens. authenticationManager.renew(“bbb”, 10); // The token with tokenId “bbb” is unexpired at time 10, so the renew request is fulfilled and now the token will expire at time 15. authenticationManager.countUnexpiredTokens(15); // The token with tokenId “bbb” expires at time 15, and the token with tokenId “aaa” expired at time 7, so currently no token is unexpired, so return 0.

Constraints:

  • 1 <= timeToLive <= 108
  • 1 <= currentTime <= 108
  • 1 <= tokenId.length <= 5
  • tokenId consists only of lowercase letters.
  • All calls to generate will contain unique values of tokenId.
  • The values of currentTime across all the function calls will be strictly increasing.
  • At most 2000 calls will be made to all functions combined.

Solution: Hashtable

Use a hashtable to store the token and its expiration time.

Time complexity: at most O(n) per operation
Space complexity: O(n)

C++

花花酱 LeetCode 1796. Second Largest Digit in a String

Given an alphanumeric string s, return the second largest numerical digit that appears in s, or -1 if it does not exist.

An alphanumericstring is a string consisting of lowercase English letters and digits.

Example 1:

Input: s = "dfa12321afd"
Output: 2
Explanation: The digits that appear in s are [1, 2, 3]. The second largest digit is 2.

Example 2:

Input: s = "abc1111"
Output: -1
Explanation: The digits that appear in s are [1]. There is no second largest digit. 

Constraints:

  • 1 <= s.length <= 500
  • s consists of only lowercase English letters and/or digits.

Solution: Hashtable

Time complexity: O(n)
Space complexity: O(10)

C++

花花酱 LeetCode 1748. Sum of Unique Elements

You are given an integer array nums. The unique elements of an array are the elements that appear exactly once in the array.

Return the sum of all the unique elements of nums.

Example 1:

Input: nums = [1,2,3,2]
Output: 4
Explanation: The unique elements are [1,3], and the sum is 4.

Example 2:

Input: nums = [1,1,1,1,1]
Output: 0
Explanation: There are no unique elements, and the sum is 0.

Example 3:

Input: nums = [1,2,3,4,5]
Output: 15
Explanation: The unique elements are [1,2,3,4,5], and the sum is 15.

Constraints:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 100

Solution: Hashtable

Time complexity: O(n)
Space complexity: O(100)

C++

花花酱 LeetCode 1743. Restore the Array From Adjacent Pairs

There is an integer array nums that consists of n unique elements, but you have forgotten it. However, you do remember every pair of adjacent elements in nums.

You are given a 2D integer array adjacentPairs of size n - 1 where each adjacentPairs[i] = [ui, vi] indicates that the elements ui and vi are adjacent in nums.

It is guaranteed that every adjacent pair of elements nums[i] and nums[i+1] will exist in adjacentPairs, either as [nums[i], nums[i+1]] or [nums[i+1], nums[i]]. The pairs can appear in any order.

Return the original array nums. If there are multiple solutions, return any of them.

Example 1:

Input: adjacentPairs = [[2,1],[3,4],[3,2]]
Output: [1,2,3,4]
Explanation: This array has all its adjacent pairs in adjacentPairs.
Notice that adjacentPairs[i] may not be in left-to-right order.

Example 2:

Input: adjacentPairs = [[4,-2],[1,4],[-3,1]]
Output: [-2,4,1,-3]
Explanation: There can be negative numbers.
Another solution is [-3,1,4,-2], which would also be accepted.

Example 3:

Input: adjacentPairs = [[100000,-100000]]
Output: [100000,-100000]

Constraints:

  • nums.length == n
  • adjacentPairs.length == n - 1
  • adjacentPairs[i].length == 2
  • 2 <= n <= 105
  • -105 <= nums[i], ui, vi <= 105
  • There exists some nums that has adjacentPairs as its pairs.

Solution: Hashtable

Reverse thinking! For a given input array, e.g.
[1, 2, 3, 4, 5]
it’s adjacent pairs are [1,2] , [2,3], [3,4], [4,5]
all numbers appeared exactly twice except 1 and 5, since they are on the boundary.
We just need to find the head or tail of the input array, and construct the rest of the array in order.

Time complexity:O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1742. Maximum Number of Balls in a Box

You are working in a ball factory where you have n balls numbered from lowLimit up to highLimit inclusive (i.e., n == highLimit - lowLimit + 1), and an infinite number of boxes numbered from 1 to infinity.

Your job at this factory is to put each ball in the box with a number equal to the sum of digits of the ball’s number. For example, the ball number 321 will be put in the box number 3 + 2 + 1 = 6 and the ball number 10 will be put in the box number 1 + 0 = 1.

Given two integers lowLimit and highLimit, return the number of balls in the box with the most balls.

Example 1:

Input: lowLimit = 1, highLimit = 10
Output: 2
Explanation:
Box Number:  1 2 3 4 5 6 7 8 9 10 11 ...
Ball Count:  2 1 1 1 1 1 1 1 1 0  0  ...
Box 1 has the most number of balls with 2 balls.

Example 2:

Input: lowLimit = 5, highLimit = 15
Output: 2
Explanation:
Box Number:  1 2 3 4 5 6 7 8 9 10 11 ...
Ball Count:  1 1 1 1 2 2 1 1 1 0  0  ...
Boxes 5 and 6 have the most number of balls with 2 balls in each.

Example 3:

Input: lowLimit = 19, highLimit = 28
Output: 2
Explanation:
Box Number:  1 2 3 4 5 6 7 8 9 10 11 12 ...
Ball Count:  0 1 1 1 1 1 1 1 1 2  0  0  ...
Box 10 has the most number of balls with 2 balls.

Constraints:

  • 1 <= lowLimit <= highLimit <= 105

Solution: Hashtable and base-10

Max sum will be 9+9+9+9+9 = 45

Time complexity: O((hi-lo) * log(hi))
Space complexity: O(1)

C++

Python3