Press "Enter" to skip to content

Posts published in “Search”

花花酱 LeetCode 46. Permutations

Given a collection of distinct integers, return all possible permutations.

Example:

Input: [1,2,3]
Output:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

Solution: DFS

Time complexity: O(n!)
Space complexity: O(n)

C++

Related Problems

花花酱 LeetCode 52. N-Queens II

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return the number of distinct solutions to the n-queens puzzle.

Example:

Input: 4
Output: 2
Explanation: There are two distinct solutions to the 4-queens puzzle as shown below.
[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]

Solution: DFS

Time complexity: O(n!)
Space complexity: O(n)

C++

Related Problems

花花酱 LeetCode 77. Combinations

Given two integers n and k, return all possible combinations of k numbers out of 1 … n.

Example:

Input: n = 4, k = 2
Output:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

Solution: DFS

Time complexity: O(C(n, k))
Space complexity: O(k)

C++

Related Problems

花花酱 LeetCode 93. Restore IP Addresses

Given a string containing only digits, restore it by returning all possible valid IP address combinations.

Example:

Input: "25525511135"
Output: ["255.255.11.135", "255.255.111.35"]

Solution: DFS

The range of valid numbers is [0, 255]

Time complexity: O(3^4)
Space complexity: O(1)

C++

花花酱 LeetCode 1210. Minimum Moves to Reach Target with Rotations

In an n*n grid, there is a snake that spans 2 cells and starts moving from the top left corner at (0, 0) and (0, 1). The grid has empty cells represented by zeros and blocked cells represented by ones. The snake wants to reach the lower right corner at (n-1, n-2) and (n-1, n-1).

In one move the snake can:

  • Move one cell to the right if there are no blocked cells there. This move keeps the horizontal/vertical position of the snake as it is.
  • Move down one cell if there are no blocked cells there. This move keeps the horizontal/vertical position of the snake as it is.
  • Rotate clockwise if it’s in a horizontal position and the two cells under it are both empty. In that case the snake moves from (r, c) and (r, c+1) to (r, c) and (r+1, c).
  • Rotate counterclockwise if it’s in a vertical position and the two cells to its right are both empty. In that case the snake moves from (r, c) and (r+1, c) to (r, c) and (r, c+1).

Return the minimum number of moves to reach the target.

If there is no way to reach the target, return -1.

Example 1:

Input: grid = [[0,0,0,0,0,1],
               [1,1,0,0,1,0],
               [0,0,0,0,1,1],
               [0,0,1,0,1,0],
               [0,1,1,0,0,0],
               [0,1,1,0,0,0]]
Output: 11
Explanation:
One possible solution is [right, right, rotate clockwise, right, down, down, down, down, rotate counterclockwise, right, down].

Example 2:

Input: grid = [[0,0,1,1,1,1],
               [0,0,0,0,1,1],
               [1,1,0,0,0,1],
               [1,1,1,0,0,1],
               [1,1,1,0,0,1],
               [1,1,1,0,0,0]]
Output: 9

Constraints:

  • 2 <= n <= 100
  • 0 <= grid[i][j] <= 1
  • It is guaranteed that the snake starts at empty cells.

Solution1: BFS

Time complexity: O(n^2)
Space complexity: O(n^2)

C++

Solution 2: DP

dp[i][j].first = min steps to reach i,j (tail pos) facing right
dp[i][j].second = min steps to reach i, j (tail pos) facing down
ans = dp[n][n-1].first

Time complexity: O(n^2)
Space complexity: O(n^2)

C++