Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 2575. Find the Divisibility Array of a String

You are given a 0-indexed string word of length n consisting of digits, and a positive integer m.

The divisibility array div of word is an integer array of length n such that:

  • div[i] = 1 if the numeric value of word[0,...,i] is divisible by m, or
  • div[i] = 0 otherwise.

Return the divisibility array of word.

Example 1:

Input: word = "998244353", m = 3
Output: [1,1,0,0,0,1,1,0,0]
Explanation: There are only 4 prefixes that are divisible by 3: "9", "99", "998244", and "9982443".

Example 2:

Input: word = "1010", m = 10
Output: [0,1,0,1]
Explanation: There are only 2 prefixes that are divisible by 10: "10", and "1010".

Constraints:

  • 1 <= n <= 105
  • word.length == n
  • word consists of digits from 0 to 9
  • 1 <= m <= 109

Solution: Big Integer Math

r = (r * 10 + word[i]) % m

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2574. Left and Right Sum Differences

Given a 0-indexed integer array nums, find a 0-indexed integer array answer where:

  • answer.length == nums.length.
  • answer[i] = |leftSum[i] - rightSum[i]|.

Where:

  • leftSum[i] is the sum of elements to the left of the index i in the array nums. If there is no such element, leftSum[i] = 0.
  • rightSum[i] is the sum of elements to the right of the index i in the array nums. If there is no such element, rightSum[i] = 0.

Return the array answer.

Example 1:

Input: nums = [10,4,8,3]
Output: [15,1,11,22]
Explanation: The array leftSum is [0,10,14,22] and the array rightSum is [15,11,3,0].
The array answer is [|0 - 15|,|10 - 11|,|14 - 3|,|22 - 0|] = [15,1,11,22].

Example 2:

Input: nums = [1]
Output: [0]
Explanation: The array leftSum is [0] and the array rightSum is [0].
The array answer is [|0 - 0|] = [0].

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 105

Solution: O(1) Space

Pre-compute the sum of all numbers as right sum, and accumulate left sum on the fly then we can achieve O(1) space.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 2570. Merge Two 2D Arrays by Summing Values

You are given two 2D integer arrays nums1 and nums2.

  • nums1[i] = [idi, vali] indicate that the number with the id idi has a value equal to vali.
  • nums2[i] = [idi, vali] indicate that the number with the id idi has a value equal to vali.

Each array contains unique ids and is sorted in ascending order by id.

Merge the two arrays into one array that is sorted in ascending order by id, respecting the following conditions:

  • Only ids that appear in at least one of the two arrays should be included in the resulting array.
  • Each id should be included only once and its value should be the sum of the values of this id in the two arrays. If the id does not exist in one of the two arrays then its value in that array is considered to be 0.

Return the resulting array. The returned array must be sorted in ascending order by id.

Example 1:

Input: nums1 = [[1,2],[2,3],[4,5]], nums2 = [[1,4],[3,2],[4,1]]
Output: [[1,6],[2,3],[3,2],[4,6]]
Explanation: The resulting array contains the following:
- id = 1, the value of this id is 2 + 4 = 6.
- id = 2, the value of this id is 3.
- id = 3, the value of this id is 2.
- id = 4, the value of this id is 5 + 1 = 6.

Example 2:

Input: nums1 = [[2,4],[3,6],[5,5]], nums2 = [[1,3],[4,3]]
Output: [[1,3],[2,4],[3,6],[4,3],[5,5]]
Explanation: There are no common ids, so we just include each id with its value in the resulting list.

Constraints:

  • 1 <= nums1.length, nums2.length <= 200
  • nums1[i].length == nums2[j].length == 2
  • 1 <= idi, vali <= 1000
  • Both arrays contain unique ids.
  • Both arrays are in strictly ascending order by id.

Solution: Two Pointers

Time complexity: O(m + n)
Space complexity: O(1)

C++

花花酱 LeetCode 2554. Maximum Number of Integers to Choose From a Range I

You are given an integer array banned and two integers n and maxSum. You are choosing some number of integers following the below rules:

  • The chosen integers have to be in the range [1, n].
  • Each integer can be chosen at most once.
  • The chosen integers should not be in the array banned.
  • The sum of the chosen integers should not exceed maxSum.

Return the maximum number of integers you can choose following the mentioned rules.

Example 1:

Input: banned = [1,6,5], n = 5, maxSum = 6
Output: 2
Explanation: You can choose the integers 2 and 4.
2 and 4 are from the range [1, 5], both did not appear in banned, and their sum is 6, which did not exceed maxSum.

Example 2:

Input: banned = [1,2,3,4,5,6,7], n = 8, maxSum = 1
Output: 0
Explanation: You cannot choose any integer while following the mentioned conditions.

Example 3:

Input: banned = [11], n = 7, maxSum = 50
Output: 7
Explanation: You can choose the integers 1, 2, 3, 4, 5, 6, and 7.
They are from the range [1, 7], all did not appear in banned, and their sum is 28, which did not exceed maxSum.

Constraints:

  • 1 <= banned.length <= 104
  • 1 <= banned[i], n <= 104
  • 1 <= maxSum <= 109

Solution 1: Greedy + HashSet

We would like to use the smallest numbers possible. Store all the banned numbers into a hashset, and enumerate numbers from 1 to n and check whether we can use that number.

Time complexity: O(m + n)
Space complexity: O(m)

C++

Solution 2: Two Pointers

Sort the banned numbers. Use one pointer j and compare with the current number i.

Time complexity: O(mlogm + n)
Space complexity: O(1)

C++

花花酱 LeetCode 2553. Separate the Digits in an Array

Given an array of positive integers nums, return an array answer that consists of the digits of each integer in nums after separating them in the same order they appear in nums.

To separate the digits of an integer is to get all the digits it has in the same order.

  • For example, for the integer 10921, the separation of its digits is [1,0,9,2,1].

Example 1:

Input: nums = [13,25,83,77]
Output: [1,3,2,5,8,3,7,7]
Explanation: 
- The separation of 13 is [1,3].
- The separation of 25 is [2,5].
- The separation of 83 is [8,3].
- The separation of 77 is [7,7].
answer = [1,3,2,5,8,3,7,7]. Note that answer contains the separations in the same order.

Example 2:

Input: nums = [7,1,3,9]
Output: [7,1,3,9]
Explanation: The separation of each integer in nums is itself.
answer = [7,1,3,9].

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 105

Solution: Stack

Time complexity: O(sum(log(nums[i]))
Space complexity: O(log(nums[i]))

C++