Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 726. Number of Atoms

 

Problem:

Given a chemical formula (given as a string), return the count of each atom.

An atomic element always starts with an uppercase character, then zero or more lowercase letters, representing the name.

1 or more digits representing the count of that element may follow if the count is greater than 1. If the count is 1, no digits will follow. For example, H2O and H2O2 are possible, but H1O2 is impossible.

Two formulas concatenated together produce another formula. For example, H2O2He3Mg4 is also a formula.

A formula placed in parentheses, and a count (optionally added) is also a formula. For example, (H2O2) and (H2O2)3 are formulas.

Given a formula, output the count of all elements as a string in the following form: the first name (in sorted order), followed by its count (if that count is more than 1), followed by the second name (in sorted order), followed by its count (if that count is more than 1), and so on.

Example 1:

Example 2:

Example 3:

Note:

  • All atom names consist of lowercase letters, except for the first character which is uppercase.
  • The length of formula will be in the range [1, 1000].
  • formula will only consist of letters, digits, and round parentheses, and is a valid formula as defined in the problem.

 



Idea:

Recursion

Time complexity: O(n)

Space complexity: O(n)

Solution:

C++

 

Java

 

花花酱 LeetCode 321. Create Maximum Number

Problem:

Given two arrays of length m and n with digits 0-9 representing two numbers. Create the maximum number of length k <= m + n from digits of the two. The relative order of the digits from the same array must be preserved. Return an array of the k digits. You should try to optimize your time and space complexity.

Example 1:

nums1 = [3, 4, 6, 5]
nums2 = [9, 1, 2, 5, 8, 3]
k = 5
return [9, 8, 6, 5, 3]

Example 2:

nums1 = [6, 7]
nums2 = [6, 0, 4]
k = 5
return [6, 7, 6, 0, 4]

Example 3:

nums1 = [3, 9]
nums2 = [8, 9]
k = 3
return [9, 8, 9]



题目大意:给你两个数字数组和k,返回从两个数组中选取k个数字能够组成的最大值。

Idea: Greedy + DP

Solution:

Time complexity: O(k * (n1+n2)^2)

Space complexity: O(n1+n2)

C++

Java

花花酱 LeetCode 725. Split Linked List in Parts

Problem:

Given a (singly) linked list with head node root, write a function to split the linked list into k consecutive linked list “parts”.

The length of each part should be as equal as possible: no two parts should have a size differing by more than 1. This may lead to some parts being null.

The parts should be in order of occurrence in the input list, and parts occurring earlier should always have a size greater than or equal parts occurring later.

Return a List of ListNode’s representing the linked list parts that are formed.

Examples 1->2->3->4, k = 5 // 5 equal parts [ [1], [2], [3], [4], null ]

Example 1:

Example 2:

Note:

  • The length of root will be in the range [0, 1000].
  • Each value of a node in the input will be an integer in the range [0, 999].
  • k will be an integer in the range [1, 50].



Idea:
List + Simulation
Solution:
C++

Java

Python

 

花花酱 LeetCode 724. Find Pivot Index

Problem:

Given an array of integers nums, write a method that returns the “pivot” index of this array.

We define the pivot index as the index where the sum of the numbers to the left of the index is equal to the sum of the numbers to the right of the index.

If no such index exists, we should return -1. If there are multiple pivot indexes, you should return the left-most pivot index.

Example 1:

Example 2:

Note:

 

  • The length of nums will be in the range [0, 10000].
  • Each element nums[i] will be an integer in the range [-1000, 1000].



Idea:

DP

Solution:

C++

 

Java

 

Python

 

 

花花酱 LeetCode 98. Validate Binary Search Tree

Problem:

Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than the node’s key.
  • Both the left and right subtrees must also be binary search trees.

Example 1:

Binary tree [2,1,3], return true.

Example 2:

Binary tree [1,2,3], return false.

Solution 1

Traverse the tree and limit the range of each subtree and check whether root’s value is in the range.

Time complexity: O(n)

Space complexity: O(n)

Note: in order to cover the range of -2^31 ~ 2^31-1, we need to use long or nullable integer.

C++/long

C++/nullable

Java/nullable

Solution 2

Do an in-order traversal, the numbers should be sorted, thus we only need to compare with the previous number.

Time complexity: O(n)

Space complexity: O(n)

C++

Java

Related Problem